摘要:
A high electron mobility transistor includes a substrate, a buffer layer, a channel layer, a spacer layer, a schottky layer and a cap layer. The buffer layer is formed on the substrate. The channel layer is formed on the buffer layer, in which the channel layer comprises a superlattice structure formed with a plurality of indium gallium arsenide thin films alternately stacked with a plurality of indium arsenide thin films. The spacer layer is formed on the channel layer. The schottky layer is formed on the spacer layer. The cap layer is formed on the schottky layer.
摘要:
The present invention relates to a method for fabricating a sub-wavelength structure layer, including: forming a metal film on a passivation layer, an n-GaN layer or a transparent conductive oxide layer; performing thermal treatment to form self assembled metal nano particles; using the metal nano particles as a mask to remove a partial area of the passivation layer, the n-GaN layer or the transparent conductive oxide layer to form a sub-wavelength structure of which the cross-sectional area increases along the thickness direction of the passivation layer, the n-GaN layer or the transparent conductive oxide layer; and removing the metal nano particles. In addition, the present invention further provides the obtained sub-wavelength structure layer and a photoelectric conversion device using the same.
摘要:
An interconnect of the group III-V semiconductor device and the fabrication method for making the same are described. The interconnect includes a first adhesion layer, a diffusion barrier layer for preventing the copper from diffusing, a second adhesion layer and a copper wire line. Because a stacked-layer structure of the first adhesion layer/diffusion barrier layer/second adhesion layer is located between the copper wire line and the group III-V semiconductor device, the adhesion between the diffusion barrier layer and other materials is improved. Therefore, the yield of the device is increased.
摘要:
The present invention discloses a fully Cu-metallized III-V group compound semiconductor device, wherein the fully Cu-metallized of a III-V group compound semiconductor device is realized via using an N-type gallium arsenide ohmic contact metal layer formed of a palladium/germanium/copper composite metal layer, a P-type gallium arsenide ohmic contact metal layer formed of a platinum/titanium/platinum/copper composite metal layer, and interconnect metals formed of a titanium/platinum/copper composite metal layer. Thereby, the fabrication cost of III-V group compound semiconductor devices can be greatly reduced, and the performance of III-V group compound semiconductor devices can be greatly promoted. Besides, the heat-dissipation effect can also be increased, and the electric impedance can also be reduced.
摘要:
An interconnect of the group III-V semiconductor device and the fabrication method for making the same are described. The interconnect includes a first adhesion layer, a diffusion barrier layer for preventing the copper from diffusing, a second adhesion layer and a copper wire line. Because a stacked-layer structure of the first adhesion layer/diffusion barrier layer/second adhesion layer is located between the copper wire line and the group III-V semiconductor device, the adhesion between the diffusion barrier layer and other materials is improved. Therefore, the yield of the device is increased.
摘要:
The present invention provides a current limit circuit apparatus, coupled with the gate of a GaN transistor. The current limit circuit comprises a diode, a first transistor, a second transistor, a first resistor, a second resistor, a third resistor and a fourth resistor. The source and the drain of the first transistor couple with the diode. The source of the second transistor couples with the gate of the first transistor. The source of the first transistor couples with the first transistor. The source of the second transistor couples with the second resistor. The third resistor couples with the fourth resistor and the gate of the first transistor. The first transistor turned off and the gate current is limited. When the current of the gate of the GaN transistor exceeds the predetermined value, the breakdown voltage is increased by limiting the gate current.
摘要:
The present invention provides a high-side driver circuit including a power transistor, the first transistor, the second transistor, the second capacitor, the second diode, a start-up circuit. The start-up circuit is coupled between a resistor and the second capacitor to complete a gate driving circuit. And, the aforementioned resistor can either be the gate resistance of the power transistor or an external resistor. The design of start-up circuit enables the functionality of the bootstrap capacitor of being charged to a designate voltage level. Thus, the depletion-mode transistor can be controlled to turn on/off without a floating voltage source or a negative voltage source.
摘要:
A high electron mobility GaN-based transistor structure comprises a substrate, an epitaxial GaN layer formed on the substrate, at least one ohmic contact layer formed on the epitaxial GaN layer, a metallic gate layer formed on the epitaxial GaN layer, and a diffusion barrier layer interposed between the metallic gate layer and the epitaxial GaN layer. The diffusion barrier layer hinders metallic atoms of the metallic gate layer from diffusing into the epitaxial GaN layer, whereby are improved the electric characteristics and reliability of the GaN-based transistor.
摘要:
The present invention relates to a semiconductor device and a manufacturing method thereof. The semiconductor device includes: a III-V semiconductor layer; an aluminum oxide layer formed on the III-V semiconductor layer; and a lanthanide oxide layer formed on the aluminum oxide layer. The method of manufacturing a semiconductor device includes: forming an aluminum oxide layer between a III-V semiconductor layer and a lanthanide oxide layer so as to prevent an inter-reaction of atoms between the III-V semiconductor layer and the lanthanide oxide layer.
摘要:
A manufacturing method of a device having series-connected HEMTs is presented. Transistors are formed on a substrate and integratedly serial-connected as an integrated device by interconnection wires. Therefore, the voltage of the device is the sum of the voltages across each transistors so that the device can have high breakdown voltage.