Abstract:
There is provided a method of manufacturing a semiconductor device. In the method, a gate insulation layer including a high-k dielectric material is formed on a substrate. An etch stop layer is formed on the gate insulation layer. A metal layer is formed on the etch stop layer. A hard mask including amorphous silicon is formed on the metal layer. The metal layer is patterned using the hard mask as an etching mask to form a metal layer pattern.
Abstract:
Transistors that include multilayered dielectric films on a channel region are provided. The multilayered dielectric comprises a lower dielectric film that may have a thickness that is at least 50% the thickness of the multilayered dielectric film and that comprises a metal oxide, a metal silicate, an aluminate, or a mixture thereof, and an upper dielectric film on the lower dielectric film, the upper dielectric film comprising a Group III metal oxide, Group III metal nitride, Group XIII metal oxide or Group XIII metal nitride. A gate electrode is provided on the multilayered dielectric film.
Abstract:
Provided is a test element group (TEG) pattern for detecting a void in a device isolation layer. The TEG pattern includes active regions which are parallel to each other and extend in a first direction, a device isolation layer that separates the active regions, a first contact that is formed across the device isolation layer and a first one of the active regions that contacts a surface of the device isolation layer, and a second contact that is formed across the device isolation layer and a second one of the active regions that contacts another surface of the device isolation layer.
Abstract:
A method of fabricating a semiconductor integrated circuit (IC) device can include forming a first silicide layer on at least a portion of a transistor on a substrate, forming nitrogen in the first silicide layer to form a second silicide layer, forming a first stress layer having a tensile stress on the substrate having the transistor formed thereon, and irradiating the first stress layer with ultraviolet (UV) light to form a second stress layer having greater tensile stress than the first stress layer.
Abstract:
Semiconductor devices and methods of forming the semiconductor device are provided, the semiconductor devices including a first dielectric layer on a substrate, and a second dielectric layer on the first dielectric layer. The first dielectric layer has a carbon concentration lower than the second dielectric layer.
Abstract:
Provided is a test element group (TEG) pattern for detecting a void in a device isolation layer. The TEG pattern includes active regions which are parallel to each other and extend in a first direction, a device isolation layer that separates the active regions, a first contact that is formed across the device isolation layer and a first one of the active regions that contacts a surface of the device isolation layer, and a second contact that is formed across the device isolation layer and a second one of the active regions that contacts another surface of the device isolation layer.
Abstract:
A semiconductor device may include a semiconductor substrate having a first region and a second region. The nitrogen-incorporated active region may be formed within the first region. A first gate electrode may be formed on the nitrogen-incorporated active region. A first gate dielectric layer may be interposed between the nitrogen-incorporated active region and the first gate electrode. The first gate dielectric layer may include a first dielectric layer and a second dielectric layer. The second dielectric layer may be a nitrogen contained dielectric layer. A second gate electrode may be formed on the second region. A second gate dielectric layer may be interposed between the second region and the second gate electrode. The first gate dielectric layer may have the same or substantially the same thickness as the second gate dielectric layer, and the nitrogen contained dielectric layer may contact with the nitrogen-incorporated active region.
Abstract:
A method of forming a semiconductor device includes forming a gate electrode and source/drain regions in a semiconductor substrate, forming a first capping nitride layer covering the gate electrode and the source/drain regions, the first capping nitride layer including a Si—H rich SiN layer, annealing the semiconductor substrate having the first capping nitride layer, and removing the first capping nitride layer.
Abstract:
Semiconductor devices and methods of forming the semiconductor device are provided, the semiconductor devices including a first dielectric layer on a substrate, and a second dielectric layer on the first dielectric layer. The first dielectric layer has a carbon concentration lower than the second dielectric layer.
Abstract:
A semiconductor device includes a MOSFET, and a plurality of stress layers disposed on the MOSFET, wherein the stress layers include a first stress layer disposed on the MOSFET and a second stress layer disposed on the first stress layer, the first stress layer has a first stress and the second stress layer has a second stress, and the first stress is different from the second stress.