摘要:
Methods of forming integrated circuit devices according to embodiments of the present invention include forming a PMOS transistor having P-type source and drain regions, in a semiconductor substrate, and then forming a diffusion barrier layer on the source and drain regions. A silicon nitride layer is deposited on at least portions of the diffusion barrier layer that extend opposite the source and drain regions. Hydrogen is removed from the deposited silicon nitride layer by exposing the silicon nitride layer to ultraviolet (UV) radiation. This removal of hydrogen may operate to increase a tensile stress in a channel region of the field effect transistor. This UV radiation step may be followed by patterning the first and second silicon nitride layers to expose the source and drain regions and then forming silicide contact layers directly on the exposed source and drain regions.
摘要:
A method of forming a carbon nano-material layer may involve a cyclic deposition technique. In the method, a chemisorption layer or a chemical vapor deposition layer may be formed on a substrate. Impurities may be removed from the chemisorption layer or the chemical vapor deposition layer to form a carbon atoms layer on the substrate. More than one carbon atoms layer may be formed by repeating the method.
摘要:
A logic device having a vertically extending MIM capacitor between interconnect layers includes a semiconductor substrate. A lower interconnect layer is located over the semiconductor substrate, and an upper interconnect layer is located over the lower interconnect layer. A U-shaped lower metal plate is interposed between the lower interconnect layer and the upper interconnect layer. The U-shaped lower metal plate directly contacts the lower interconnect layer. The capacitor dielectric layer covers the inner surface of the lower metal plate. Further, the capacitor dielectric layer has an extension portion interposed between the brim of the lower metal plate and the upper interconnect layer. An upper metal plate covers the inner surface of the capacitor dielectric layer. The upper metal plate is in contact with the upper interconnect layer and is confined by the capacitor dielectric layer.
摘要:
Provided is a method of manufacturing a semiconductor device with enhancements of electrical characteristics. The method includes sequentially forming a lower electrode and an insulating layer on a semiconductor substrate, dry-etching a region of the insulating layer corresponding to a capacitor forming region so that the lower electrode is not exposed, forming an inter-insulating layer by wet-etching the insulating layer so that a region of the lower electrode corresponding to the capacitor forming region is exposed, and sequentially forming a dielectric layer and an upper electrode on the capacitor forming region to fabricate a capacitor.
摘要:
A semiconductor device having a dielectric or an insulating layer with decreased (or minimal) erosion properties when performing metal Chemical Mechanical Polishing (CMP) and a method of fabricating the same are provided. The semiconductor device may include gate electrodes formed on a substrate. A first interlayer oxide layer may be formed on the substrate and between the gate electrodes. A second interlayer oxide layer, which is harder than the first interlayer oxide layer, may be formed on the first interlayer oxide layer. A plug electrode may be formed through the second interlayer oxide layer and the first interlayer oxide layer.
摘要:
Multi-layered dielectric films which can improve the performance characteristics of a microelectronic device are provided as well as methods of manufacturing the same. The multi-layered dielectric film includes a single component oxide layer made of a single component oxide, and composite components oxide layers made of a composite components oxide including two or more different components formed along either side of the single component oxide layer without a layered structure.
摘要:
A method of forming a semiconductor device includes forming a gate electrode and source/drain regions in a semiconductor substrate, forming a first capping nitride layer covering the gate electrode and the source/drain regions, the first capping nitride layer including a Si—H rich SiN layer, annealing the semiconductor substrate having the first capping nitride layer, and removing the first capping nitride layer.
摘要:
A transistor includes a silicon germanium channel layer formed on a portion of a single crystalline silicon substrate. The silicon germanium channel layer includes a Si—H bond and/or a Ge—H bond at an inner portion or an upper surface portion thereof. A PMOS transistor is provided on the silicon germanium channel layer. A silicon nitride layer is provided on surface portions of the single crystalline silicon substrate, the silicon germanium channel layer and the PMOS transistor for applying a tensile stress. The MOS transistor shows good operating characteristics.
摘要:
A transistor includes a silicon germanium channel layer formed on a portion of a single crystalline silicon substrate. The silicon germanium channel layer includes a Si—H bond and/or a Ge—H bond at an inner portion or an upper surface portion thereof. A PMOS transistor is provided on the silicon germanium channel layer. A silicon nitride layer is provided on surface portions of the single crystalline silicon substrate, the silicon germanium channel layer and the PMOS transistor for applying a tensile stress. The MOS transistor shows good operating characteristics.
摘要:
A semiconductor device includes a sidewall oxide layer covering an inner wall of a trench, a nitride liner on the sidewall oxide layer and a gap-fill insulating layer filling the trench on the nitride liner. A first impurity doped oxide layer is provided at edge regions of both end portions of the sidewall oxide layer so as to extend from an entry of the trench adjacent to an upper surface of the substrate to the nitride liner. A dent filling insulating layer is provided on the nitride liner in the trench to protect a surface of the first impurity doped oxide layer. Related methods are also disclosed.