Abstract:
Disclosed is an apparatus and method for transmitting data in a wireless communication system. The apparatus for transmitting a packet data in a wireless communication system includes a Media Access Control (MAC) layer for determining the number of the number of preambles to be inserted based on a feed-back reply signal from a receiver, and generating a multi-preamble aggregation packet by inserting the determined number of preambles into packets received from an upper layer and a physical layer for forming the multi-preamble aggregation packet generated in a data processing unit, by using a physical layer packet, and transmitting the formed multi-preamble aggregation packet.
Abstract:
An apparatus for reducing power consumption of a receiver in a high-speed wireless communication system and a control method thereof are provided. The apparatus for processing a signal in a receiver of a wireless communication system includes a carrier sensor configured to sense a carrier used in the wireless communication system, a decoder configured to decode the detected carrier signal to a signal and data, and a controller configured to control supplying power and a clock only to the carrier sensor during carrier sensing, and supplying power and a clock to an overall receiver when a carrier is sensed.
Abstract:
An exemplary automatic gain control device includes: a radio frequency receiver for receiving a plurality of first signals through a plurality of antennas, respectively controlling gains of the plurality of first received signals, and outputting the plurality of the first signals having the controlled gain as a plurality of second signals; a signal saturation detecting unit for outputting a saturation index determination value when the number of plurality of second signals that are greater than a threshold value is greater than a predetermined number; and a gain controlling unit for comparing power values of the plurality of second signals to detect one power value, and outputting a gain value determined based on a detected power value and a saturation index determination value to the radio frequency receiver.
Abstract:
A wireless transmitter which performs reconfiguration for high mobility and high throughput includes: an operation mode decision unit configured to decide an operation mode depending on mobility, a required data rate, and wireless link performance; a clock generation unit configured to generate a plurality of clock signals; a selection unit configured to select necessary clock signals among the plurality of clock signals generated by the clock generation unit according to the operation mode decided by the operation mode decision unit; and at least one or more digital modulation units configured to modulate transmitted data by adjusting a signal bandwidth of a frequency domain and a transmission time of a time domain using the clock signals selected by the selection unit.
Abstract:
An apparatus for detecting a packet end point in a wireless communication system includes: a signal reception unit configured to receive a signal from an outside, convert the signal into a baseband signal, perform analog-digital conversion of the baseband signal, and perform a digital front end; a storage unit configured to store an output of the signal reception unit; a frequency offset estimation unit configured to estimate a frequency offset using the output of the storage unit; a frequency offset correction unit configured to compensate for a frequency error using the estimated frequency offset; an offset correlation unit configured to calculate correlation of the frequency offset and a cyclic prefix; an auto-correlation operation unit configured to calculate auto-correlation of the cyclic prefix; and a packet end detection unit configured to check a packet end point using the auto-correlation.
Abstract:
A method and apparatus of accessing a channel in a wireless local area network is provided. A destination station receives a request to send (RTS) frame to allocate a network allocation vector from a source station over a first bandwidth and transmits a clear to send (CTS) frame over a second bandwidth to the source station in response to the RTS frame. The second bandwidth is dynamically determined when a first parameter has a predetermined value.
Abstract:
The present invention relates to a method and apparatus for transceiving data. A method in which a transmitting terminal transmits data to a receiving terminal in a MIMO system according to one embodiment of the present invention comprises the following steps: generating a data field containing the data; generating a signal field containing information on the data field; generating a data frame containing the data field and the signal field; and transmitting the data frame to the receiving terminal. According to the present invention, an end of the frame being transmitted is accurately notified to the receiving terminal in a communication system in which the frame is transmitted using MIMO, thereby decoding the frame in a more efficient manner at the receiving terminal.
Abstract:
Provided are apparatus and method for transmitting and receiving data for a wireless communication system. The method includes generating a first aggregation packet by controlling the number of preambles or by controlling a size of a packet according to a channel state of a channel formed to at least one reception terminal or according to a state of the reception terminal, and transmitting the first aggregation packet to the reception terminal.
Abstract:
A method for estimating timing offset in an OFDM wireless communication system using preamble and pilot includes: estimating a carrier offset by using preamble included in a currently received OFDM packet and estimating a first timing offset based on the estimated carrier offset to thereby produce a first timing offset estimation value; estimating a second timing offset to thereby produce a second timing offset estimation value by transforming the OFDM packet into signals of frequency domain and using a pilot signal of the frequency-domain signals; checking a channel condition based on packet error information of a previously received packet to thereby produce error condition information, and selecting one between the first timing offset estimation value and the second timing offset estimation value based on the error condition information; and compensating data signals for timing offset among the frequency-domain signals the based on the selected timing offset estimation value.
Abstract:
The present invention relates to a transmitting apparatus of a wireless communication system, and a method thereof. The transmitting apparatus monitors receiving of response data for data that has been transmitted to a receiving end, and sets a first parameter for counting successful receipts according to receiving on the response data. The transmitting apparatus demodulates the response data and extracts the number of demodulated data that satisfies a first set value. Subsequently, it is determined whether the first parameter satisfies a second set value and the number of demodulated data satisfies a predetermined ratio of a referential amount of packets. According to the present invention, an efficient transmission mode for a channel state can be provided with reference to an extracted number of soft-decision data from response data received at a receiving end. In addition, a transmission mode can be determined by using only response data according to the present invention.