Abstract:
Provided is an electronic apparatus including a first display, a second display, a lens array between the first display and the second display, a first polarization modulation array between the first display and the lens array, a second polarization modulation array between the lens array and the second display, a memory, and at least one processor configured to identify a first area having a luminance lower than a reference luminance in the second display, identify, to control a first luminance of the first area in the second display to be the reference luminance, a first polarization angle variation corresponding to a first area in the first polarization modulation array and a second polarization angle variation corresponding to a first area in the second polarization modulation array, control the first polarization modulation array based on the first polarization angle variation, and control the second polarization modulation array based on the second polarization angle variation.
Abstract:
The present disclosure relates to a method and apparatus for setting the frequency of wireless power transmission. To this end, the method for setting the frequency of a wireless power transmission apparatus can include the steps of: obtaining power transmission information from the wireless power receiving apparatus receiving a wireless power signal; and setting the transmission frequency of the wireless power signal on the basis of the obtained power transmission information.
Abstract:
The present specification discloses as one embodiment a power receiver for transmitting a message by using a power transmission signal. The power receiver comprises: a power reception portion for receiving the wireless power signal that is formed by a power transmitter; a demodulation portion for demodulating the received wireless power signal; a modulation portion for modulating the received wireless power signal; and a control portion for decoding a first packet from the wireless power signal that is demodulated by means of the demodulation portion, for determining whether a second packet that does not collide with the first packet which has been decoded can be transmitted, and for modulating the received wireless power signal so as to comprise the second packet by controlling the modulation portion, when transmission is possible according to the result of the determination.
Abstract:
This invention relates to an automatic detection apparatus for UL/DL configuration in LTE-TDD signal and the method thereby for automatically detecting the UL/DL configuration number of an LTE-TDD signal without a decoder by using a simple structure. An automatic detection apparatus for UL/DL configuration in LTE-TDD signal comprises: a signal receiving unit for receiving an LTE-TDD RF signal and converting the LTE-TDD RF signal into a LTE-TDD baseband signal; a signal extracting unit for extracting a cell-specific reference signal for each subframe length in one frame length of the LTE-TDD baseband signal received from the signal receiving unit; a signal power measurement unit for measuring the power of the corresponding subframe reference signal according to the cell-specific reference signal received from the signal extracting unit; and an UL/DL configuration determination unit for determining whether the corresponding subframe is a DL subframe or an UL subframe according to the comparison result of the power of the corresponding subframe reference signal measured in the signal power measurement unit with a predetermined reference value, and determining the UL/DL configuration number for the corresponding frame based on the subframe number determined as described above. In the above configuration, it is characterized in that the predetermined reference value is the noise power without any LTE-TDD signal.
Abstract:
According to the present disclosure, there is provided a wireless power receiver configured to provide a continuous phone call environment or content reproduction environment while at the same time conveniently performing wireless charging during the phone call or content reproduction by controlling to activate the operation of an audio output module provided in a wireless power receiver and change an output path of the audio signal when the wireless power receiver is detected. To this end, a wireless power receiver according to an embodiment disclosed herein can include an audio output module; a power receiving unit configured to receive a wireless power signal; and a control unit configured to detect a wireless power transmitter located in a charging region associated with the wireless power signal using the wireless power signal, and activate the operation of the audio output module when the wireless power transmitter is detected.
Abstract:
A lithium secondary battery, in which electrolyte impregnation capability is improved, even in the case of a high-density electrode assembly, by forming a bottom insulator plate with a structure to facilitate the impregnation of the electrode assembly with an electrolyte. The bottom insulator plate may be formed with a plurality of holes in the form of a mesh, and the holes are defined by a plurality of protrusions with differing heights to improve the electrolyte impregnation capability. Alternatively, the bottom insulator plate may be formed with a central hole and a plurality of peripheral holes radially arranged around the central hole in an aperture ratio to improve the electrolyte impregnation capability.
Abstract:
A lithium secondary battery, in which electrolyte impregnation capability is improved, even in the case of a high-density electrode assembly, by forming a bottom insulator plate with a structure to facilitate the impregnation of the electrode assembly with an electrolyte. The bottom insulator plate may be formed with a plurality of holes in the form of a mesh, and the holes are defined by a plurality of protrusions with differing heights to improve the electrolyte impregnation capability. Alternatively, the bottom insulator plate may be formed with a central hole and a plurality of peripheral holes radially arranged around the central hole in an aperture ratio to improve the electrolyte impregnation capability.
Abstract:
A wireless power transmitter in which an adjustment of the operating frequency is performed by selecting a signal from two or more signals having different frequencies as a carrier signal, the selected signal having a frequency corresponding to data included in the packet, the two or more signals has a resonant frequency for resonance coupling with the wireless power receiver and a frequency within a predetermined frequency from the resonant frequency, and the two or more signals at the resonant frequency and the frequency within the predetermined frequency range indicates a first data value and a second data value which is different from the first data value respectively.
Abstract:
The present disclosure provides the structure of a transmission and reception unit in a wireless charging system. To this end, according to an embodiment, there is provided a wireless power receiver configured to receive a wireless power signal from a wireless power transmitter to receive wireless power, and the wireless power receiver may include a receiving coil unit comprising a primary coil and a secondary coil receiving the wireless power signal; and a charger configured to charge power which is a sum of wireless power received by the primary coil and the secondary coil, respectively, based on the wireless power signal.
Abstract:
In a wireless power transmitter, a wireless power receiver, and a signal collision avoiding method disclosed herein, when a new wireless power receiver is placed in a specific area while the wireless power transmitter is performing communication with a specific wireless power receiver, the new wireless power receiver analyzes a response signal formed by the specific wireless power receiver through a listening mode, and transmits its own response signal at a collision-avoided time point, thereby allowing an efficient stable data communication.