Abstract:
A method of driving a light source includes converting a reference luminance value of the light source to a first just noticeable difference (JND) value. The JND value represents a minimum noticeable difference between two stimuli. A target luminance value lower than the reference luminance value is determined using the first JND value. A first driving signal applied to the light source is generated using the target luminance value so that a user may not notice a luminance change when a luminance value of a light source is decreased in order to decrease power consumption of a display apparatus.
Abstract:
A liquid crystal display is provided having improved image quality and visibility. The display device includes: a plurality of display panels which display multiple images from multiple display panels; a projection film which overlaps the display panels; and a lens panel including a first lens unit and a second lens unit is interposed between the display panel and the projection film. The first lens unit refracts images and the second lens unit improves image brightness. Therefore the resultant projection is a seamlessly connected image from the multiple display panels.
Abstract:
Disclosed are methods and kits for measuring in situ the activity and amount of an enzyme in a sample using a single measurement system. The method includes the steps of: (a) contacting a sample to a capturing agent having the capacity to bind to the enzyme to be analyzed and immobilized on a solid matrix; (b) measuring the activity of the enzyme captured by the capturing agent; (c) contacting a detection antibody specific to the enzyme captured by the capturing agent; and (d) detecting an antigen-antibody complex formed in the step (c). There is no need for separate measurement system to measure the activity and amount of an enzyme, as well as the above methods and kits permit to measure the precise activity and amount of an enzyme simultaneously because the measurement of enzyme activity and amount is carried out in a single and same measurement system as to the same sample in almost simultaneous manner.
Abstract:
A display device includes an optical module, a receiving container and a display panel. The optical module includes a substrate, point light sources and an optical lens. The point light sources are disposed on the substrate, each of which generates light using power applied thereto through the substrate. The optical lens includes a first lens part having a receiving part receiving each of the point light sources, a second lens part disposed at a peripheral portion of the first lens part and having a different shape from that of the first lens part, and a connecting part connecting the first and second lens parts. The light from each of the point light sources sequentially passes through the first lens part and the second lens part. The receiving container receives the optical module. The display panel displays an image using the light.
Abstract:
A DC-DC converter is provided, which includes a transformer including a primary coil and a secondary coil, a boost converter connected to the primary coil of the transformer and generating a first voltage, and a flyback converter connected to the secondary coil of the transformer and generating a second voltage.
Abstract:
An LCD apparatus displays a color image of a frame divided into a plurality of periods in which different colors are displayed. The LCD apparatus includes an LCD panel and a number of light-emitting units. The LCD panel includes a plurality of gate lines and a plurality of data lines crossing the plurality of the gate lines. The light-emitting units generate different colors in each of the periods such that an outermost light-emitting unit emits light longer than a second outermost light-emitting unit thereby enhancing luminance uniformity.
Abstract:
A display device includes an optical module, a receiving container and a display panel. The optical module includes a substrate, point light sources and an optical lens. The point light sources are disposed on the substrate, each of which generates light using power applied thereto through the substrate. The optical lens includes a first lens part having a receiving part receiving each of the point light sources, a second lens part disposed at a peripheral portion of the first lens part and having a different shape from that of the first lens part, and a connecting part connecting the first and second lens parts. The light from each of the point light sources sequentially passes through the first lens part and the second lens part. The receiving container receives the optical module. The display panel displays an image using the light. Thus, optical luminance and optical luminance uniformity of an image display panel are improved.
Abstract:
A power supply includes a light source, a signal converting unit converting an externally supplied AC voltage into a DC voltage, a DC-DC converting unit converting a magnitude of the DC voltage, and a light source protecting unit. The light source protecting unit outputs the DC voltage of a predetermined range as a light source driving voltage to supply a stabilized source driving voltage to the light source and suspending an application of the light source driving voltage to the light source when a magnitude of the light source driving voltage is larger than a predetermined value, based on an externally supplied control signal.
Abstract:
A DC-DC converter includes a main inductor connected to an input voltage, a main switching element connected in series to the main inductor, a main diode connected to the main inductor and a load, and a main capacitor connected to the main diode and the load, the DC-DC converter changing the input voltage to output a changed input voltage as an output voltage. The DC-DC converter further includes an oscillator connected between the main inductor and the main diode, an auxiliary switching element connected to the oscillator, the auxiliary switching element changing an operation state based on an externally applied control signal to control the oscillator, and a diode unit connected to the oscillator and the auxiliary switching element and controlling current flow based on operations of the oscillator and the auxiliary switching element to change the output voltage. The main switching element and the main diode are to be zero voltage switching or zero current switching in accordance with the operations of the oscillator and the auxiliary switching element.
Abstract:
Disclosed is a display module including a transparent display panel and a frame to fix a side of the transparent display panel, wherein the frame has a communication unit to receive data from the outside, a controller to process the received data and to output a drive command corresponding to the processed data and a display drive unit to drive the transparent display panel in response to the drive command from the controller. A display system includes a system body and a display module detachably mounted in the system body.