摘要:
The present invention sets forth a method and system for communicating with an external device through a processing unit in a graphics system of a computing device. In one embodiment, the method comprises allocating a first set of memory buffers having a first memory buffer and a second memory buffer in the graphics system based on an identification information of the external device, and invoking a first thread processor of the processing unit of the graphics system to perform services associated with a physical layer according to the identification information of the external device by storing a first data stream received from the external device through an I/O interface of the processing unit of the graphics system in the first memory buffer and retrieving a second data stream from the second memory buffer for transmission to the external device through the I/O interface.
摘要:
An integrated semiconductor substrate structure is disclosed. In one aspect, the structure includes a substrate, a GaN-heterostructure and a semiconductor substrate layer. The GaN heterostructure is present in a first device area for definition of GaN-based devices, and is covered at least partially with a protection layer. The semiconductor substrate layer is present in a second device area for definition of CMOS devices. At least one of the GaN heterostructure and the semiconductor substrate layer is provided in at least one trench in the substrate, so that the GaN heterostructure and the semiconductor substrate layer are laterally juxtaposed.
摘要:
A semiconductor device and method of manufacturing the device is disclosed. In one aspect, the device includes a semiconductor substrate and a GaN-type layer stack on top of the semiconductor substrate. The GaN-type layer stack has at least one buffer layer, a first active layer and a second active layer. Active device regions are definable at an interface of the first and second active layer. The semiconductor substrate is present on an insulating layer and is patterned to define trenches according to a predefined pattern, which includes at least one trench underlying the active device region. The trenches extend from the insulating layer into at least one buffer layer of the GaN-type layer stack and are overgrown within the at least one buffer layer, so as to obtain that the first and the second active layer are continuous at least within the active device regions.
摘要:
A multiprocessor system comprises at least one processing module, at least one I/O module, and an interconnect network to connect the at least one processing module with the at least one input/output module. In an example embodiment, the interconnect network comprises at least two bridges to send and receive transactions between the input/output modules and the processing module. The interconnect network further comprises at least two crossbar switches to route the transactions over a high bandwidth switch connection. Using embodiments of the interconnect network allows high bandwidth communication between processing modules and I/O modules. Standard processing module hardware can be used with the interconnect network without modifying the BIOS or the operating system. Furthermore, using the interconnect network of embodiments of the present invention is non-invasive to the processor motherboard. The processor memory bus, clock, and reset logic all remain intact.
摘要:
For solving the defect that a hardware clock of a serial peripheral interface bus has to cooperate with slower software-simulated clocks used by a microprocessor while applying serial peripheral interface buses on a large-scale touch panel, a programmable logic device is used as a bridge of communicating information between the micro processor and sensors. Therefore, the microprocessor no longer has to take execution time to simulate serial peripheral interface buses by software, and is able to program hardware clocks of each of the serial peripheral interface buses according to speed requirements of different sensors, so that sensing signals of a plurality of sensors may be integrated on a touch device having the large-scale touch panel, and a processing speed of the touch device in processing the sensing signals may be optimized as a result.
摘要:
A flexible electrode array substrate includes a flexible base and a plurality of pixel electrodes. The pixel electrodes are disposed on the flexible base and arranged in an array. The size of one of the pixel electrodes is different from that of another of the pixel electrodes. In addition, another flexible electrode array substrate including a flexible base and a plurality of bar electrodes is also provided. The bar electrodes are disposed on the flexible base and arranged in an array. The size of one of the bar electrodes is different from that of another of the bar electrodes. Besides, a flexible display device having one of the said flexible electrode array substrates is also provided.
摘要:
An illuminating device includes a light source module for emitting light and an optical lens for adjusting the light. The light source module includes a reflecting unit and LEDs. The reflecting unit includes strip-shaped grooves each extending along a first direction. The LEDs are mounted on the reflecting unit in the grooves. The optical lens includes an array of lens units each including a main body, a light diverging portion and a light converging portion. The light diverging portion is for expanding a light field of the LEDs along the first direction. The light converging portion is for compressing the light field along a second direction. The reflecting unit is for further compressing the light field along the second direction.
摘要:
An illuminating device includes a light source module for emitting light and an optical lens configured for adjusting the light emitted from the light source module. The optical lens includes an array of lens units. Each lens unit includes a main body, a light diverging portion and a light converging portion. The main body includes a light incident surface and a light emitting surface opposite to the light incident surface. The light diverging portion is configured for expanding a light field along a first direction, and the light converging portion is configured for compressing a light field along a second direction. The light diverging portion and the light converging portion are formed on at least one of the light incident surface and the light emitting surface. The light diverging portion includes parallel protrusions distributed along the first direction.
摘要:
Embodiments of the invention are generally directed to systems, apparatuses, and methods for mitigating silent data corruption in a fully-buffered memory module architecture. In an embodiment, a memory controller includes a memory channel bit-lane error detector having an M-bit CRC and N-bit CRC, wherein N is less than M. The N-bit CRC is used if at least one bit-lane of the memory channel fails. In one embodiment, the memory controller selectively applies the strong error detection capability of an error correction code (ECC) in combination with the N-bit CRC to signal the need to resend faulty data, if at least one bit-channel has failed. Other embodiments are described and claimed.
摘要:
An exemplary illuminating device comprises a light source module, a light reflective module, a lens array and a light transmissive module. The lens array is for expanding a light field of the illuminating device along a first direction and compressing the light field of the illuminating device along a second direction. The light transmissive module comprises a first surface facing towards the lens array and a second surface opposite to the first surface. The second surface has a plurality of microstructures formed thereon thereby expanding the light field of the illuminating device along the first direction.