Abstract:
An image forming apparatus includes a fixing member, at least one reflective optical sensor, a heat shielding member, and a processor. The fixing member fixes an image on a recording medium moving in a first axis direction. At least one reflective optical sensor emits light toward the fixing member and receives light reflected by the fixing member. The heat shielding member is arranged between the fixing member and the at least one reflective optical sensor, has a light passing part through which light directed to the fixing member from the at least one reflective optical sensor and light reflected by the fixing member and directed to the at least one reflective optical sensor passes, and prevents heat transfer from the fixing member to the at least one reflective optical sensor. The processor is configured to obtain a surface state of the fixing member on the basis of an output signal from the at least one reflective optical sensor.
Abstract:
An objective is to achieve a positional change measurement device which measures positional change of a dynamic measured surface by using speckle patterns while easily reducing influence of fluctuations in a measurement environment temperature. Provided is a positional change measurement device including: a light source; an illuminating optical system configured to guide light from the light source to a measured surface; an imaging optical system; an image pickup device configured to acquire a speckle pattern by receiving reflection light from the measured surface via the imaging optical system; and detected-length compensation means for compensating for fluctuations in a detected length caused by temperature fluctuations. Positional change of the measured surface is measured based on a result of cross-correlation computation performed on multiple speckle patterns acquired at predetermined time intervals.
Abstract:
An image forming apparatus includes a charging device configured to uniformly charge a surface of a photoconductive element; an image writing device configured to write an image in the charged photoconductive element by light to form an electrostatic latent image; a developing device configured to visualize the formed electrostatic latent image as a toner image; a transfer device configured to transfer the toner image to a sheet recording medium; a fixing device configured to fix the transferred toner image onto the medium; and a surface information detecting device configured to detect surface information of a fixing member of the fixing device. The surface information detecting device radiates optical spots on a surface of the fixing member in a direction crossing a conveying direction, receives reflected light of each optical spot, and detects the surface information of the fixing device based on the detection results of the reflective lights.
Abstract:
A reflective optical sensor includes at least three light-emitting elements; a lighting optical system that guides light emitted from the light-emitting elements to a toner pattern; and at least three light-receiving elements that receive the beams of light reflected by the toner pattern. The lighting optical system has a lateral magnification m that satisfies m≦P/S, where S is the size of the light-emitting elements and P is the arrangement pitch of the light-emitting elements.
Abstract translation:反射光学传感器包括至少三个发光元件; 照明光学系统,其将从发光元件发射的光引导到调色剂图案; 以及接收由调色剂图案反射的光束的至少三个光接收元件。 照明光学系统具有满足m≦̸ P / S的横向放大率m,其中S是发光元件的尺寸,P是发光元件的排列间距。
Abstract:
A reflective optical sensor includes at least three light-emitting elements; a lighting optical system that guides light emitted from the light-emitting elements to a toner pattern; and at least three light-receiving elements that receive the beams of light reflected by the toner pattern. The lighting optical system has a lateral magnification m that satisfies m≦P/S, where S is the size of the light-emitting elements and P is the arrangement pitch of the light-emitting elements.
Abstract translation:反射光学传感器包括至少三个发光元件; 照明光学系统,其将从发光元件发射的光引导到调色剂图案; 以及接收由调色剂图案反射的光束的至少三个光接收元件。 照明光学系统具有满足m≦̸ P / S的横向放大率m,其中S是发光元件的尺寸,P是发光元件的排列间距。
Abstract:
An objective is to achieve a positional change measurement device which measures positional change of a dynamic measured surface by using speckle patterns while easily reducing influence of fluctuations in a measurement environment temperature. Provided is a positional change measurement device including: a light source; an illuminating optical system configured to guide light from the light source to a measured surface; an imaging optical system; an image pickup device configured to acquire a speckle pattern by receiving reflection light from the measured surface via the imaging optical system; and detected-length compensation means for compensating for fluctuations in a detected length caused by temperature fluctuations. Positional change of the measured surface is measured based on a result of cross-correlation computation performed on multiple speckle patterns acquired at predetermined time intervals.
Abstract:
Disclosed is an adamantanamine derivative which is useful as a significant intermediate of an 11βHSD-1 inhibitor.Disclosed is a compound represented by the formula (II): wherein R10 is a group represented by the formula: —(CR13R14)m-NR12—R11 or the like.
Abstract translation:公开了一种金刚烷胺衍生物,其可用作11重量%HSD-1抑制剂的重要中间体。 公开了由式(II)表示的化合物:其中R 10是由下式表示的基团: - (CR 13 R 14)m -NR 12 R 11等。
Abstract:
A toner density is calculated from outputs of light-receiving elements based on a difference between a reflection property of a supporting member and a reflection property of a toner pattern. Light-emitting elements aligned in one direction that is inclined to a sub-direction emit a detection light in such a manner that a distance between adjacent spots falling on the supporting member in a second direction is equal to or smaller than a width of the toner pattern in the second direction. The light-receiving elements receive a reflected light reflected from the supporting member and/or the toner pattern. The light-receiving elements are aligned, opposed to the supporting member, in a one direction corresponding to the light-emitting elements.
Abstract:
A toner density is calculated from outputs of light-receiving elements based on a difference between a reflection property of a supporting member and a reflection property of a toner pattern. Light-emitting elements aligned in one direction that is inclined to a sub-direction emit a detection light in such a manner that a distance between adjacent spots falling on the supporting member in a second direction is equal to or smaller than a width of the toner pattern in the second direction. The light-receiving elements receive a reflected light reflected from the supporting member and/or the toner pattern. The light-receiving elements are aligned, opposed to the supporting member, in a one direction corresponding to the light-emitting elements.
Abstract:
An image forming apparatus includes a charging device configured to uniformly charge a surface of a photoconductive element; an image writing device configured to write an image in the charged photoconductive element by light to form an electrostatic latent image; a developing device configured to visualize the formed electrostatic latent image as a toner image; a transfer device configured to transfer the toner image to a sheet recording medium; a fixing device configured to fix the transferred toner image onto the medium; and a surface information detecting device configured to detect surface information of a fixing member of the fixing device. The surface information detecting device radiates optical spots on a surface of the fixing member in a direction crossing a conveying direction, receives reflected light of each optical spot, and detects the surface information of the fixing device based on the detection results of the reflective lights.