Abstract:
A method detects a topology of a reflective surface. The method includes providing an optical fiber positioned such that light emitted from the optical fiber is reflected by at least a portion of the reflective surface. The optical fiber and the portion of the reflective surface form an optical resonator having an optical resonance with a resonance lineshape. The method further includes emitting light from the optical fiber while the optical fiber is at a plurality of positions along the reflective surface. The light emitted from the optical fiber irradiates a corresponding plurality of portions of the reflective surface. The method further includes measuring a change of the resonance lineshape due to the irradiation of the plurality of portions of the reflective surface.
Abstract:
In certain embodiments, an optical device and a method of use is provided. The optical device can include a fiber Bragg grating and a narrowband optical source. The narrowband optical source can be configured to generate light. A first portion of light can be transmitted along a first optical path extending along and through the length of the fiber Bragg grating at a group velocity. The light can have a wavelength at or in the vicinity of a wavelength at which one or more of the following quantities is at a maximum value: (a) the product of the group index spectrum and a square root of the power transmission spectrum, (b) the slope of a product of the group index spectrum and one minus the power transmission spectrum, and (c) the slope of a product of the group index spectrum and the power transmission spectrum.
Abstract:
A method utilizes an optical resonator that includes a reflective element and a spatial mode filter positioned relative to the reflective element such that light emitted from the spatial mode filter is reflected by the reflective element. The optical resonator has an optical resonance with a resonance lineshape that is asymmetric as a function of wavelength.
Abstract:
An optical structure on an optical fiber and a method of fabrication is provided. The optical structure includes an end of an optical fiber and a layer formed on the end of the optical fiber. The layer comprises one or more first portions having a first optical pathlength in a direction perpendicular to the layer and one or more second portions having a second optical pathlength in the direction perpendicular to the layer, the second optical pathlength different from the first optical pathlength.
Abstract:
An apparatus is provided for measuring a frequency-domain optical coherence tomography power spectrum from a sample. The apparatus includes a broadband light source, an optical spectrum analyzer, and a partially reflective element optically coupled to the light source, to the optical spectrum analyzer, and to the sample. A first portion of light from the light source is reflected by the partially reflective element and propagates to the optical spectrum analyzer. A second portion of light from the light source propagating through the partially reflective element, impinging the sample, reflecting from the sample, and propagating to the optical spectrum analyzer.
Abstract:
An apparatus characterizes at least one fiber Bragg grating. The apparatus includes a laser pulse source, an optical spectrum analyzer, and multiple optical paths. A first optical path includes a pulse stretcher and an attenuator. A second optical path optically coupled to the first optical path includes a mirror. A third optical path optically coupled to the first optical path includes a first fiber Bragg grating. A fourth optical path is optically coupled to the second optical path, the third optical path, and the optical spectrum analyzer. A fifth optical path optically coupled to the laser pulse source and the optical spectrum analyzer includes a delay line.
Abstract:
An optical sensor includes at least one optical coupler and an optical waveguide in optical communication with the at least one optical coupler. The optical waveguide is configured to receive a first optical signal from the at least one optical coupler. The first optical signal has a group velocity and a phase velocity while propagating through at least a portion of the optical waveguide, the group velocity less than the phase velocity. An interference between the first optical signal and a second optical signal is affected by perturbations to at least a portion of the optical sensor.
Abstract:
A doped superfluorescent fiber source (SFS) has an enhanced mean wavelength stability. A method stabilizes the mean wavelength of a SFS. The method includes providing an SFS including a doped fiber. The method further includes pumping the SFS with pump light from a pump source having a wavelength dependent on the temperature of the pump source and dependent on the power of the pump light. The method further includes optimizing the length of the fiber to reduce the influence of the pump light wavelength on the stability of the mean wavelength.
Abstract:
An optical structure includes an optical waveguide and at least one photonic crystal structure. The optical structure also includes a structural portion mechanically coupled to the optical waveguide and the at least one photonic crystal structure such that a region substantially bounded by the structural portion, the optical waveguide, and the at least one photonic crystal structure has a specified volume.
Abstract:
An optical sensor includes at least a portion of an optical waveguide having a hollow core. The optical waveguide substantially confines a first optical signal and a second optical signal within the hollow core as the first optical signal and the second optical signal counterpropagate through the optical waveguide. Interference between the first optical signal and the second optical signal is responsive to perturbation of the at least a portion of the optical waveguide.