Abstract:
A method of achieving automatic learning of an input vector presented to an artificial neural network (ANN) formed by a plurality of neurons, using the K nearest neighbor (KNN) mode. Upon providing an input vector to be learned to the ANN, a Write component operation is performed to store the input vector components in the first available free neuron of the ANN. Then, a Write category operation is performed by assigning a category defined by the user to the input vector. Next, a test is performed to determine whether this category matches the categories of the nearest prototypes, i.e. which are located at the minimum distance. If it matches, this first free neuron is not engaged. Otherwise, it is engaged by assigning the matching category to it. As a result, the input vector becomes the new prototype with the matching category associated thereto. Further described is a circuit which automatically retains the first free neuron of the ANN for learning.
Abstract:
The present invention relates to fast complementary emitter follower drivers/buffers to be used in either a CMOS or pure complementary bipolar environment. The output driver (22) comprises top NPN and bottom PNP output transistors (T1, T2) with a common output node (N) connected therebetween. A terminal (15) is connected to the said output node (N) where the output signal (VOUT) is available. The pair of bipolar output transistors is biased between the first and second supply voltages (VH, GND). The output driver is provided with a voltage translator circuit (S) connected between the base nodes (B1, B2) of the output transistors (T1, T2). Logic signals (IN1, IN2), supplied by a preceding driving circuit (21), are applied to said base nodes. According to the invention, the voltage translator circuit (S) comprises two diodes (D1, D2) connected in series, preferably implemented with a main bipolar transistor having a junction shorted by a diode connected transistor to form a Darlington-like configuration. As a result, the voltage shift VS between the base nodes is selected to have the said output transistors operating at an operating point which ensures minimum delay and power consumption. In a typical bipolar technology, VS is made to be approximately equal to 1.5V. Additional features comprise the connection of a capacitor (C) between the base nodes and resistances (R1, R2) to the base nodes. The preceding driving circuit may be a CMOS logic gate or an ECL logic circuit.