摘要:
It is an object of the present invention to provide an organic transistor having a low drive voltage. It is also another object of the present invention to provide an organic transistor, in which light emission can be obtained, which can be manufactured simply and easily. According to an organic light-emitting transistor, a composite layer containing an organic compound having a hole-transporting property and a metal oxide is used as part of the electrode that injects holes among source and drain electrodes, and a composite layer containing an organic compound having an electron-transporting property and an alkaline metal or an alkaline earth metal is used as part of the electrode that injects electrons, where either composite layer has a structure of being in contact with an organic semiconductor layer.
摘要:
It is an object of the present invention to form an organic transistor including an organic semiconductor having high crystallinity without loosing an interface between an organic semiconductor of a channel where carriers are spread out and a gate insulating layer and deteriorating a yield. A semiconductor device according to the present invention has a stacked structure of organic semiconductor layers, and at least the upper organic semiconductor layer is in a polycrystalline or a single crystalline state and the lower organic semiconductor layer is made of a material serving as a channel. Carrier mobility can be increased owing to the upper organic semiconductor layer having high crystallinity; thus, insufficient contact due to the upper organic semiconductor layer can be compensated by the lower organic semiconductor layer.
摘要:
An object of the present invention is to improve use efficiency of a semiconductor substrate without lowering efficiency of a fabrication process. Another object of the present invention is to achieve cost reduction by effective use of a semiconductor substrate whose thickness is reduced due to repeated use in a process of manufacturing an SOI substrate. In a process of manufacturing an SOI substrate, a semiconductor substrate is used as a bond substrate a predetermined number of times, or as long as it meets predetermined conditions. In a case where a first single crystal semiconductor substrate cannot be used as a bond substrate, it is bonded to a second single crystal semiconductor substrate. Then, a stacked-layer substrate formed from the first single crystal semiconductor substrate and the second single crystal semiconductor substrate bonded to each other is used as a bond substrate in a process of manufacturing an SOI substrate.
摘要:
It is an object of the present invention, in a case of using a conductive material as part of an electrode for an organic transistor, to provide an organic transistor having a structure whose characteristics are not controlled by the work function of the conductive material. Moreover, it is other objects of the present invention to provide an organic transistor having favorable carrier mobility and to provide an organic transistor which is excellent in durability. A composite layer containing an organic compound and an inorganic material is used for an electrode for an organic field effect transistor, that is, at least part of one of a source electrode and a drain electrode in the organic field effect transistor.
摘要:
It is an object of the present invention to form an organic transistor including an organic semiconductor having high crystallinity without loosing an interface between an organic semiconductor of a channel where carriers are spread out and a gate insulating layer and deteriorating a yield. A semiconductor device according to the present invention has a stacked structure of organic semiconductor layers, and at least the upper organic semiconductor layer is in a polycrystalline or a single crystalline state and the lower organic semiconductor layer is made of a material serving as a channel. Carrier mobility can be increased owing to the upper organic semiconductor layer having high crystallinity; thus, insufficient contact due to the upper organic semiconductor layer can be compensated by the lower organic semiconductor layer.
摘要:
It is an object of the invention is to provide a method suitable for reprocessing a semiconductor substrate having favorable planarity. Another object of the invention is to manufacture a reprocessed semiconductor substrate by using the method suitable for reprocessing a semiconductor substrate having favorable planarity, and to manufacture an SOI substrate by using the reprocessed semiconductor substrate. A projecting portion of a semiconductor substrate is removed using a method capable of selectively removing a semiconductor region which is damaged by ion irradiation or the like. Further, an oxide film is formed on a surface of the semiconductor substrate when the semiconductor substrate is planarized by a polishing treatment typified by a CMP method, whereby the semiconductor substrate is evenly polished at a uniform rate. Moreover, a reprocessed semiconductor substrate is manufactured using the aforementioned method, and an SOI substrate is manufactured using the reprocessed semiconductor substrate.
摘要:
It is an object to form a high quality gate insulating film which is dense and has a strong insulation resistance property, and to propose a high reliable organic transistor in which a tunnel leakage current is little. One mode of the organic transistor of the present invention has a step of forming the gate insulating film by forming the conductive layer which becomes the gate electrode activating oxygen (or gas including oxygen) or nitrogen (or gas including nitrogen) or the like using dense plasma in which density of electron is 1011 cm−3 or more, and electron temperature is a range of 0.2 eV to 2.0 eV with plasma activation, and reacting directly with a portion of the conductive layer which becomes the gate electrode to be insulated.
摘要:
It is an object of the present invention is to provide a method of manufacturing an SOI substrate provided with a single-crystal semiconductor layer which can be practically used even when a substrate having a low heat-resistant temperature, such as a glass substrate or the like, is used, and further, to manufacture a semiconductor device with high reliability by using such an SOI substrate. A semiconductor layer which is separated from a semiconductor substrate and bonded to a supporting substrate having an insulating surface is irradiated with electromagnetic waves, and the surface of the semiconductor layer is subjected to polishing treatment. At least part of a region of the semiconductor layer is melted by irradiation with electromagnetic waves, and a crystal defect in the semiconductor layer can be reduced. Further, the surface of the semiconductor layer can be polished and planarized by polishing treatment.
摘要:
It is an object of the present invention to provide a method for manufacturing an inexpensive organic TFT which does not depend on an expensive dedicated device and does not expose an organic semiconductor to atmospheric air. Moreover, it is another object of the present invention to provide a method for manufacturing an organic TFT at low temperature so as not to cause a problem of pyrolyzing a material. In view of the foregoing problems, one feature of the present invention is that a film-like protector which serves as a protective film is provided over an organic semiconductor film. The film-like protector can be formed by being fixed to a film-like support body with an adhesive agent or the like.
摘要:
It is an object of the present invention to form an organic transistor including an organic semiconductor having high crystallinity without loosing an interface between an organic semiconductor of a channel where carriers are spread out and a gate insulating layer and deteriorating a yield. A semiconductor device according to the present invention has a stacked structure of organic semiconductor layers, and at least the upper organic semiconductor layer is in a polycrystalline or a single crystalline state and the lower organic semiconductor layer is made of a material serving as a channel. Carrier mobility can be increased owing to the upper organic semiconductor layer having high crystallinity; thus, insufficient contact due to the upper organic semiconductor layer can be compensated by the lower organic semiconductor layer.