Abstract:
Systems and methods for authorizing a customer premise equipment (CPE) device to join a network through a network termination unit (NTU). The CPE device can send an encrypted connection request, and an authorization server can decrypt the connection request and provide a network membership key (NMK) associated with the CPE device to the NTU. The authorization server can encrypt the NMK associated with the CPE device using a device access key (DAK) associated with the NTU.
Abstract:
Network devices of a particular device class can implement a distributed bandwidth control (DBC) protocol to utilize resources of a communication network in accordance with a threshold amount of resources allocated for DBC device communication. A DBC device of a plurality of DBC devices can determine a transmission cost associated with a pending DBC transmission. The pending DBC transmission is initiated. A delay time period associated with the initiated pending DBC transmission can be calculated based, at least in part, on the transmission cost associated with the initiated DBC pending transmission and a threshold transmission cost associated with DBC device communications. Subsequent transmissions of the DBC device and all other DBC devices in the communication network can be delayed by at least the delay time period associated with the initiated pending DBC transmission of the DBC device.
Abstract:
Associating service agents in communication over a network to one or more respective clients coupled to the network at respective ports of the network is described. At a first service agent, a first signal is received from a first client coupled to the network at a first port. The first signal propagates over a first signal propagation path between the first service agent and the first port. An association between the first service agent and the first client is established based at least in part on a difference between: the first signal propagation path between the first service agent and the first port, and a second signal propagation path between the first service agent and a second port or between a second service agent and the first port.
Abstract:
Functionality for secure client authentication and service authorization in a shared communication network are disclosed. A managing network device of a communication network causes a securely connected client network device to perform an account authorization process with an accounting network device in parallel with a service matching process with the managing network device and one or more service providers of the communication network. The managing network device executes the service matching process and securely matches the client network device with one of the service providers. The accounting network device executes the account authorizing process with the client network device and provides a service voucher to the managing network device authorizing one or more of the service providers to service the client network device. The managing network device transmits the service voucher to the matched service provider to prompt the matched service provider to service the client network device.
Abstract:
Dynamic channel reuse in multi-access communication systems. A first station in a communication network may receive a transmission over a communication medium. The first station may generate a reuse determination based on information from the received transmission. The reuse determination may be usable with at least one other reuse determination to coordinate reuse of the communication medium.
Abstract:
There is provided a powerline network that includes a number of stations including a central coordinator for coordinating transmissions of each of the stations. Each of the stations is configurable to generate one or more tone maps for communicating with each of the other stations in the powerline network. Each tone map includes a set of tones to be used on a communication link between two of the stations. Each tone map further includes a unique set of modulation methods for each tone. Each of the stations is further configurable to generate a default tone map for communicating with each of the other stations, where the default tone map is valid for all portions of a powerline cycle. Each of the stations is further configurable to monitor its bandwidth needs and to request additional bandwidth from the central coordinator.
Abstract:
Communicating among stations in a network includes providing repeated beacon transmissions from at least some of the stations including a first station. The first station is assigned to a first level. Any stations that can reliably receive transmissions from the first station are assigned to a second level. Any stations not assigned to any of the preceding levels that can reliably receive transmissions from the preceding level are assigned to each of one or more higher levels. Timing information at each station in a given level is synchronized according to transmissions received from at least one station in the preceding level.
Abstract:
There is provided a powerline network that includes a number of stations including a central coordinator for coordinating transmissions of each of the stations. The central coordinator is configurable to transmit a beacon at an interval based on a phase of a powerline cycle. The interval of the beacon can be substantially equal to two periods of the powerline cycle. The interval of the beacon includes a reserved region including a persistent allocation region and a non-persistent allocation region. The beacon also includes a broadcast message including a persistent schedule and a non-persistent schedule. The persistent schedule is valid for a current beacon period and a number of subsequent beacon periods as indicated by the beacon, while the non-persistent schedule is valid for a single beacon period. The persistent allocation region and the non-persistent allocation region are determined based on the persistent schedule and the non-persistent schedule, respectively.
Abstract:
Disclosed are systems and methods for communicating among stations coupled to a communication medium by receiving signals from a plurality of the stations, determining signal strength values for each of the received signals based on at least a portion of the signal, and based on the signal strength values, selecting a detection threshold such that, in response to a signal having a signal strength in excess of the detection threshold, the signal is processed according to a protocol of a subset of the stations.
Abstract:
Communicating between stations in a network is described. A plurality of stations coordinate according to a distributed protocol to select a first station to transmit over a shared medium. The communication includes transmitting between the first station and a second station over the shared medium during a time period in which stations other than the first and second stations refrain from transmitting over the shared medium. The first station transmits information that grants permission to the second station to transmit during the time period.