Abstract:
A wireless distance measurement system and a wireless distance measurement method that measure the distance between a base station and a terminal without clock synchronization between a plurality of base stations, and without requiring input of the position relationships between a plurality of base stations. Clock phase shift section (210) shifts a clock that is used to generate transmission pulses is phase-shifted by a specific amount every 100 nanoseconds, and A/D conversion section (211) converts a signal re-radiated from terminal (103) to a digital signal using the shifted clock. Correlation calculation section (212) performs correlation calculation between the digital signal and the transmission pulse and creates a delay profile by adding digital signals in the shifted phases between same phases, and incoming wave detection section (213) detects peaks of the pulses in the delay profile. Distance calculation section (214) calculates the distance to terminal (103) based on the timings to transmit the pulses and the timings to detect peaks of the pulses.
Abstract:
A method for calculating a shift amount of a microlens from a position of a light receiving element arranged in a pixel of an image pickup element is provided. The microlens collects incident light from an image pickup lens. The method comprises: acquiring an incident angle characteristic value indicating a relation between an arranged position of the pixel and an incident angle of the incident light to the pixel; calculating a sampled shift amount of the microlens from the position of the light receiving element corresponding the incident angle characteristic value based on light collection efficiency of the incident light; approximating the sampled shift amount by a second or higher order function to calculate a shift amount characteristic function indicating a relation between the arranged position and the shift amount; and calculating the shift amount of the pixel using the shift amount characteristic function.
Abstract:
A solid-state image pickup apparatus comprises a pixel unit consisting of a plurality of pixels; a pixel control unit for controlling the plurality of pixels; a readout unit for reading a signal of each pixel output from the pixel unit; a shutter unit for establishing a state of a light incident to the pixel unit and that of shielding the pixel unit from the light; and a control unit, comprising an exposure mode changeover unit for changing over an exposure mode to either a first exposure mode performing a simultaneous exposure for all pixels or a second exposure mode performing an exposure for each of a predetermined unit of pixels, for controlling the pixel control unit, readout unit and shutter unit according to an exposure mode changed over by the exposure mode changeover unit.
Abstract:
Using a switching signal from a coarse/fine switching and operation mode switching circuit, the width of change of a counter control value during power up is increased, and the width of change is reduced once a steady state is reached. In the steady state, the frequency of updating is limited by a control signal from an update permit control circuit. In the steady state, the frequency band of a current source in an LD driving circuit is reduced in width.
Abstract:
A CMOS image sensor of the present invention comprises an array of a picture element circuit, a unit of correlated double sampling one picture element line of the array, a charge pump type voltage up unit of supplying a predetermined step-up voltage to the picture element circuit that forms an array and a prevention unit of preventing the noise caused by a pumping operation of the charge pump type voltage up unit. The prevention unit may be a prohibition unit of prohibiting a pumping operation of the charge pump type voltage up unit. In the case where the charge pump type voltage up unit comprises a voltage up circuit for assigning a voltage up output in accordance with an assigned clock and a clock generation circuit for generating a clock in such a way that the voltage up output matches with the predetermined upped voltage, the prohibition unit of prohibiting a pumping operation may comprise a not-assignment unit of not assigning an output of the clock generation unit to the voltage up circuit.
Abstract:
A shift register outputs a selection signal for selection of a horizontal sequence of pixels of a two-dimensional pixel array, and includes a vertical shift register for applying a selection signal to the pixel array from either the outer left side or the outer right side of the pixel array, and a voltage applying device for applying a power supply voltage for reading data for a horizontal sequence of pixels from an opposite side of a supply of the selection signal to the pixel array after the selection signal is output.
Abstract:
There is disclosed a pulse-width controller which includes a first pulse-width adjusting section which adjusts the pulse width of a main pulse signal, a second pulse-width adjusting section which adjusts the pulse width of a reference pulse signal, a pulse-width measurement section which measures the pulse width of the reference pulse signal adjusted by the second pulse-width adjusting section, a target pulse-width setting section for setting a target pulse width to be achieved by the first pulse-width adjusting section, and a control section which outputs to the first pulse-width adjusting section a control signal for use in adjusting the pulse width of the main pulse signal in the first pulse-width adjusting section, on the basis of pulse-width information regarding the reference pulse signal measured in the pulse-width measurement section and the target pulse-width information set by the target pulse-width setting section. It becomes possible to precisely control a pulse width without being affected by the ambient state at the time of pulse-width control operations.
Abstract:
A power supply circuit includes a rectifier for converting an alternating voltage to a DC voltage for driving a single chip LSI microcomputer control system in, for example, a microwave oven. A switching circuit is included in the power supply circuit for developing an output DC voltage only after the DC voltage derived from the rectifier reaches a preselected level. The switching circuit includes large current transistors connected in the Darlington fashion, whereby the power supply circuit develops the output DC voltage with a short leading transient period which is required for developing an auto-clear signal in the single chip LSI microcomputer control system.
Abstract:
First diffusion region constituting a photodiode in each pixel stores carriers generated according to incident light. Second diffusion region is formed at a surface of the first diffusion region to cover a peripheral part of the first diffusion region. In the peripheral part of the first diffusion region, crystal defects tend to occur by a process of forming an isolation region and a gate electrode, so that dark current noise tends to occur. The second diffusion region functioning as a protection layer prevents crystal defects in a manufacturing process. The second diffusion region isn't formed on a center of the surface of the first diffusion region where crystal defects don't tend to occur. In the first diffusion region where the second diffusion region isn't formed, the thickness of a depletion layer increases, which improves light detection sensitivity. This improves detection sensitivity of the photodiode without increasing the dark current noise.
Abstract:
A CMOS image sensor with an effectively increased aperture ratio and moreover with improved optical sensitivity, and a method of manufacture of such a CMOS image sensor is provided a first aspect of the invention is an image sensor, has a pixel region 10 in which are formed a plurality of pixels each having at least a photodiode, a reset transistor, and a source-follower transistor; and a peripheral circuit region 12 in which are formed peripheral circuits which process read-out signals read out from the pixel region, a well region PW2 in the pixel region PW1 is formed to be more shallow than a well region in the peripheral circuit region. Also, reset transistors or source-follower transistors are formed in the shallow well region PW2 of the pixel region 10, and a photodiode region PHD2 is embedded below the transistor well region PW2.