DEVICES AND METHODS TO EVALUATE TISSUE COOLING

    公开(公告)号:US20200041430A1

    公开(公告)日:2020-02-06

    申请号:US16339789

    申请日:2017-10-06

    Abstract: The present invention provides devices, systems, and methods for using them to monitor therapeutic cooling of blood perfused tissues or organs such as the brain. In one embodiment, the invention comprises a device for evaluating tissue cooling comprising a container that contains a polymer-fluid matrix having a thermal cooling property that is substantially similar to a tissue or organ such as a human brain. In another embodiment, the invention comprises a system for evaluating tissue cooling comprising: (a) a device for evaluating tissue cooling as described above and (b) a warm loop. In another embodiment, the invention comprises a method for evaluating a technique for cooling a tissue or organ comprising (a) providing a device comprising a container that contains a polymer-fluid matrix having a thermal cooling property that is substantially similar to a tissue or organ such as human brain, and (b) perfusing the polymer-fluid matrix with a fluid.

    Neural progenitor cell differentiation

    公开(公告)号:US10377985B2

    公开(公告)日:2019-08-13

    申请号:US15875717

    申请日:2018-01-19

    Inventor: Khalil Bitar

    Abstract: Differentiation and stability of neural stem cells can be enhanced by in vitro or in vivo culturing with one or more extracellular matrix (ECM) compositions, such as collagen I, IV, laminin and/or a heparan sulfate proteoglycan. In one aspect of the invention, adult mammalian enteric neuronal progenitor cells can be induced to differentiate on various substrates derived from components or combinations of neural ECM compositions. Collagen I and IV supported neuronal differentiation and extensive glial differentiation individually and in combination. Addition of laminin or heparan sulfate to collagen substrates unexpectedly improved neuronal differentiation, increasing neuron number, branching of neuronal processes, and initiation of neuronal network formation. In another aspect, neuronal subtype differentiation was affected by varying ECM compositions in hydrogels overlaid on intestinal smooth muscle sheets. The matrix compositions of the present invention can be used to tissue engineer transplantable innervated GI smooth muscle constructs to remedy aganglionic disorders.

    TISSUE-ENGINEERED GUT-SPHINCTER COMPLEXES AND METHODS OF MAKING THE SAME

    公开(公告)号:US20190015190A1

    公开(公告)日:2019-01-17

    申请号:US16066492

    申请日:2016-12-28

    Inventor: Khalil BITAR

    Abstract: Methods are disclosed for forming tissue engineered, tubular gut-sphincter complexes from intestinal circular smooth muscle cells, sphincteric smooth muscle cells and enteric neural progenitor cells. The intestinal smooth muscle cells and neural progenitor cells can be seeded on a mold with a surface texture that induces longitudinal alignment of the intestinal smooth muscle cells and co-cultured until an innervated aligned smooth muscle sheet is obtained. The innervated smooth muscle sheet can then be wrapped around a tubular scaffold to form an intestinal tissue construct. Additionally, the sphincteric smooth muscle cells and additional enteric neural progenitor cells can be mixed in a biocompatiable gel solution, and the gel and admixed cells applied to a mold having a central post such that the sphinteric smooth muscle and neural progenitor cells can be cultured to form an innervated sphincter construct around the mold post. This innervated sphincter construct can also be transferred to the tubular scaffold such that the intestinal tissue construct and sphincter construct contact each other, and the resulting combined sphincter and intestinal tissue constructs can be further cultured about the scaffold until a unified tubular gut-sphincter complex is obtained.

Patent Agency Ranking