Abstract:
Disclosed are a fluid control system and method for controlling delivery of two variable pressure fluids to maintain a pressure bias between the two fluids within an end use device. The system employs an actively controlled vent valve which can be integrated into a fluid control module in preferred embodiments and is actuated to an open position to decrease fluid pressure in a first fluid supply line when a determined pressure differential reversal exceeds a predetermined threshold pressure differential reversal. The disclosed system is particularly useful in a high pressure direct injection (HPDI) multi-fueled engine system where the first fluid is a gaseous fuel and the second fluid is a liquid fuel. The fluid control system and method of controlling it provide for improved control of venting along with protecting system components from high back pressure and cross contamination of fluids.
Abstract:
A check valve with improved response time comprises a valve member which has a central portion of a substantially convex shape and a guide portion that surrounds the central portion. The central portion has a central convex curvature extending towards the outlet port of the check valve, in the direction of the fluid flow. The guide portion has a weight to area ratio that is smaller than the weight to area ratio of the central portion. Such a check valve has an overall reduced weight of the valve member allowing a faster response time when the valve switches between its closed and open positions.
Abstract:
A multi-fuel rail apparatus for an internal combustion engine communicates fuel from 10 a first fuel source and a second fuel source to a plurality of fuel injectors. Each fuel injector receives fuel from the multi-fuel rail apparatus through a branch connection for each fuel. The multi fuel rail apparatus has a first elongate member including a first longitudinal bore spaced apart from a second longitudinal bore and first and second fuel inlets for fluidly communicating first and second fuels into the first and 15 second longitudinal bores respectively. There is a branch connecting structure for each fuel injector along the first elongate member for fluidly connecting the first and second longitudinal bores with respective branch connections from respective fuel injectors.
Abstract:
A method for supplying gaseous fuel from a liquid state to an internal combustion engine includes employing a second internal combustion engine as a source of energy, pumping the gaseous fuel in the liquid state by transforming energy from the source of energy into mechanical work for the pumping, exchanging waste heat from the second internal combustion engine in a first heat exchange fluid circulating through the second internal combustion engine to a second heat exchange fluid, vaporizing the gaseous fuel pumped from the liquid state with heat from the second heat exchange fluid, and delivering the gaseous fuel vaporized from the liquid state to the internal combustion engine. Pressure of the gaseous fuel delivered to the internal combustion engine is maintained within a predetermined range of tolerance by the pumping.
Abstract:
A safety device for a cylinder holding gaseous fluids under pressure is disclosed. The safety device has a device body in which a passage is defined for a fluid; the passage extends from an entry aperture, suitable for being placed in fluidic communication with a cylinder, to an exit aperture. An obturator air tightly engages the passage, the obturator is movable from a first position, in which it indicates the presence of fluid at a pressure below a first predefined pressure threshold value, inside the cylinder, and a second position, in which it indicates the presence of fluid at a pressure above the first predefined pressure threshold value inside the cylinder. At least one temperature and/or pressure-sensitive relief device is positioned in the obturator in such a way that, upon exceeding a predefined temperature threshold or upon exceeding a second predefined pressure threshold, the relief device opens the passage for the fluid and permits the flow of fluid from the entry aperture towards the exit aperture.
Abstract:
A method for fuel regulation during a non-motoring operating mode of an internal combustion engine is provided. A fuel regulator employs a first fuel to regulate pressure of a second fuel. The first fuel is communicated to the fuel regulator through a first fuel circuit. The method comprises actuating a fuel injector that introduces the first fuel and the second fuel into a combustion chamber of the internal combustion engine during the non-motoring operating mode. The fuel injector is actuated with an injection command signal having a pulse width below a predetermined maximum value whereby no fuel is injected into the combustion chamber and the first fuel drains from the first fuel circuit through the fuel injector to a supply tank.
Abstract:
A method for supplying gaseous fuel from a tender car to an internal combustion engine on a locomotive comprising storing the gaseous fuel at a cryogenic temperature in a cryogenic storage tank on the tender car; pumping the gaseous fuel to a first pressure from the cryogenic storage tank; vaporizing the gaseous fuel at the first pressure; and conveying the vaporized gaseous fuel to the internal combustion engine; whereby a pressure of the vaporized gaseous fuel is within a range between 310 bar and 575 bar.
Abstract:
Starting a gaseous fuelled engine employing a pilot fuel at cold temperatures is challenging due to reduced ignitability and combustion efficiency of the fuel(s), and the increased viscosity of engine oil. A technique for starting a compression ignition, gaseous fuelled internal combustion engine employing a pilot fuel comprises determining one of a normal start condition and a cold start condition; during the normal start condition, introducing the pilot fuel into a combustion chamber of the internal combustion engine when the pilot fuel pressure rises above a first pressure; during the cold start condition, introducing the pilot fuel into the combustion chamber when the pilot fuel pressure rises above a second pressure that is higher than the first pressure; and selectively introducing the gaseous fuel into the combustion chamber.
Abstract:
Unconstrained rotational movement of an inner vessel with respect to an outer vessel at one end of a cryogenic storage vessel increases stress in supports at an opposite end. A storage vessel for holding a cryogenic fluid comprises an inner vessel defining a cryogen space and having a longitudinal axis, and an outer vessel spaced apart from and surrounding the inner vessel, defining a thermally insulating space between the inner and outer vessels. A structure for supporting the inner vessel within the outer vessel at one end comprises an inner vessel support bracket connected with the inner vessel, an outer vessel support bracket connected with the outer vessel, and an elongated support extending between and mutually engaging the inner and outer support brackets to constrain radial and rotational movement of the inner vessel with respect to the outer vessel and to allow axial movement of the inner vessel with respect to the outer vessel along the longitudinal axis.
Abstract:
Diesel-cycle engines are known to have greater power, torque and efficiency compared to Otto-cycle engines of like displacement. When the fuel is a gaseous fuel, such as natural gas, a pilot fuel (such as diesel) is normally required to assist with ignition in a gaseous fuelled Diesel-cycle engine. It would be advantageous to reduce the power, torque and efficiency gap between a Diesel-cycle engine and a gaseous fuelled Otto-cycle engine. A combustion apparatus for a gaseous fuelled internal combustion engine comprises a combustion chamber defined by a cylinder bore, a cylinder head and a piston reciprocating within the cylinder bore. A diameter of the cylinder bore is at least 90 mm and a ratio between the diameter and a stroke length of the piston is at most 0.95. There is at least one intake passage for delivering a charge to the combustion chamber, and at least one intake valve is configured in the cylinder head and cooperates with the intake passage to create a predominant tumble flow motion in the combustion chamber.