Abstract:
A test support apparatus includes a supporting mechanism supporting a product, a holding post pressed on the product, a positioning assembly, an operating member and a clamping member. The positioning assembly is attached to the supporting mechanism and the holding post. The positioning assembly includes a positioning member and a moving member. The moving member is attached to the holding post, and moveably relative to the positioning member to adjust a distance between the holding post and the supporting mechanism. The operating member is rotatably attached to the positioning member. The clamping member is rotatably attached to the operating member and rotatable relative to the operating member about a first axis. The clamping member engaged with the supporting mechanism, and the operating member is rotatable relative to the positioning member about a second axis to rotate the clamping member about the first axis to disengaged from the supporting mechanism.
Abstract:
A capacitor and a manufacturing method thereof are provided. Two electrodes are disposed opposite to each other. Two electrode protection layers are respectively disposed on inner sides of the electrodes and include carbon particles each covered and bonded with a polymer shell. Active carbon layers are disposed on opposite inner sides of the electrode protection layers. The separator is disposed between the active carbon layers. The electrolyte fills between the electrode protection layers. The polymer shells of each electrode protection layer are bonded to the surface of the corresponding electrode by first and second functional groups. The first functional groups include thiol groups. The second functional groups include epoxy groups or carboxylic groups. The electrode protection layers serve as adhesion layers between the active carbon layers and the electrodes, and protect the electrodes from being corroded by the acid electrolyte solution.
Abstract:
A method for generating a final depth information related map includes the following steps: receiving a coarse depth information related map, wherein a resolution of the coarse depth information related map is smaller than a resolution of the final depth information related map; and outputting the final depth information related map reconstructed from the coarse depth information related map by receiving an input data and performing a guided interpolation operation upon the coarse depth information related map according to the input data.
Abstract:
An application server reads components data from a component information system (CIS) of a database server connected to the application server. The components data are converted to HDL data. If the converted HDL data includes illegal characters, a user is prompted to modify the illegal characters. If the converted HDL data does not include illegal characters, the application server amends formats of the converted HDL data according to requirements of each client connected to the application server. Each client includes a drawing unit. The application server controls the drawing unit to draw circuit diagram using the HDL data with the amended formats.
Abstract:
The present disclosure provides a method and system for monitoring an application. The method comprises creating a simulated system service; establishing a connection with a function in a device driver that manages an Input/Output (I/O) channel of the device; intercepting data transmitted from the application to the function in the device driver that manages the I/O channel of the device; replacing, based on the intercepted data, a system service requested by the application with a corresponding simulated system service; and recording a request received by the simulated system service and forwarding the request to an analysis module for analysis. The present disclosure is advantageous in that the system request is intercepted during the Binder communication process of the system and the simulated system layer service is used for analyzing the behavior features of the application in the Android operating system. In contrast to other application blocking techniques, the method and system according to the present disclosure do not disturb the normal operation of the application.
Abstract:
A system of a wireless physiological signal integration is provided. The system includes a wireless transmission sensor chip and a drug delivering system, wherein the wireless transmission sensor chip includes a sensor sensing a physiological signal of a patient, a signal conversion module converting the physiological signal into a converted signal, and a wireless transmission module wirelessly transmitting the converted signal, and the drug delivering system determines a dose of a drug and a timing for providing the drug according to the converted signal.
Abstract:
This specification describes a tray substrate for tile flooring that can be used in narrow grout line modular floating tile assemblies. The tray is preferably made of plastic and has vertical tray edges around the top of the tray substrate with upward and downward tabs protruding from the sides of the tray substrate wherein some of the tabs are at least partially recessed under the surface of the tray.
Abstract:
A radio frequency (RF) front-end circuit and an operating method thereof are provided. The proposed RF front-end circuit includes a first linear amplifier, a second linear amplifier, and a calibration unit. The first linear amplifier performs a high-frequency amplification on a RF signal to generate an amplified RF signal, and down-converts the amplified RF signal into an intermediate frequency (IF) signal. The second first linear amplifier performs a low-frequency amplification on the IF signal to generate an amplified IF signal. The calibration unit is coupled to the first and the second linear amplifiers, and receives a voltage gain fed back from the second linear amplifier. Then, the calibration unit performs an auto-calibration procedure according to the voltage gain fed back from the second linear amplifier to search for an input current value of the first linear amplifier, which correspondingly maximizes the voltage gain of the first amplifier.
Abstract:
A spindle control system for a milling machine is provided. The milling machine includes a column, an overarm, a spindle for mounting a cutter, a first motor mounted on the column for driving movement of the overarm, and a second motor mounted on the overarm for driving rotation of the spindle. The spindle control system includes a distance sensor and a temperature sensor, each to be mounted on the overarm and to be disposed proximate to the end portion of the spindle. The spindle control system further includes a central control unit for determining a compensation parameter based on the displacement sensed by the distance sensor and the temperature sensed by the temperature sensor, and for controlling movement of the overarm by the first motor through a compensation distance based on the compensation parameter to compensate for at least one of the cutter deformation and the spindle deformation.
Abstract:
The present invention provides a method for detecting a defect of a display panel and related defect detecting device. The method includes: utilizing lights having different colors to illuminate the display panel; obtaining a plurality of corresponding grey-scale diagrams when the lights illuminate the display panel; and determining whether the display panel has a defect. If the grey-scale diagrams indicate a grey-scale difference, determining that the display panel has a defect. In this way, the present invention is able to raise defect detecting ability for the display panel and prevent from missing the defects.