摘要:
The objective of the present invention is to reduce the effect of the hysteresis of a scanning electromagnet so as to obtain a particle beam therapy system that realizes high-accuracy beam irradiation. There are included an irradiation management apparatus (32) that controls the scanning electromagnet (3), based on target irradiation position coordinates (Pi) of a charged particle beam (1b), and a position monitor (7) that measures measurement position coordinates (Ps) of the charged particle beam (1b). The irradiation management apparatus (32) has a command value creator (25) that outputs a control input (Io (Ir)) to the scanning electromagnet (3), based on the target irradiation position coordinates (Pi) and correction data (Ia) created on the basis of the measurement position coordinates (Ps), measured by the position monitor (7) in the preliminary irradiation in which the excitation pattern of the scanning electromagnet is the same as that of the main irradiation plan, and the target irradiation position coordinates (Pi).
摘要:
There is obtained a particle beam therapy system in which the beam size is reduced. There are provided an accelerator 14 that accelerates a charged particle beam; an irradiation apparatus that has a beam scanning apparatus 5a, 5b for performing scanning with the charged particle beam and irradiates the charged particle beam onto an irradiation subject ; and a beam transport apparatus 15 that has a duct for ensuring a vacuum region or gas region that continues from the accelerator 14 to a beam outlet window 7 disposed at a more downstream position than the beam scanning apparatus 5a, 5b, and that transports the charged particle beam exiting from the accelerator 14 to the irradiation apparatus.
摘要:
There is provided a particle beam therapy system that can rapidly change beam energy without increasing the size of a deflection electromagnet even in the case where the number of required beam-energy changes is large.There is provided a plurality of beam energy changing units each provided with a beam energy attenuation unit; a beam is deflected in such a way as to sequentially passes through the plurality of beam energy changing units; while a beam passes through one of the beam energy changing unit, the beam energy attenuation amount of another beam energy changing unit is changed.
摘要:
A stacked conformation radiotherapy system capable of homogenizing a radiation dose distribution, including an irradiation head and irradiation control means. The irradiation head projects a particle beam accelerated by an accelerator, toward an object to-be-irradiated, and it includes wobbler electromagnets for deflecting and scanning the particle beam. In carrying out stacked conformation radiotherapy by deflecting and scanning the particle beam, the irradiation control means subjects the wobbler electromagnets to magnetization controls so that the particle beam may depict a one-stroke revolving orbit which begins with a start point and returns to the start point, and it performs a control so that the irradiation period of the particle beam to be outputted from the irradiation head may become integral times a wobbler cycle which is required for the particle beam to make one revolution of the revolving orbit.
摘要:
A particle beam irradiation system comprising a scanning electromagnet for a particle beam to scan an irradiation objective, a scanning information storage section for storing scanning position information regarding a plurality of scanning positions in a case where a particle beam scans an irradiation objective and scanning order information which is order for scanning a plurality of scanning positions, and a scanning electromagnet control section for controlling a scanning electromagnet based on scanning position information and scanning order information which is stored in the scanning information storage section, wherein the scanning position information which is stored in the scanning information storage section includes a part whose scanning position information is same as the scanning position information of adjacent order.
摘要:
A particle beam irradiation apparatus according to the present invention is provided with a vacuum duct that forms a vacuum region through which the charged particle beam passes, a vacuum window through which the charged particle beam is launched from the vacuum region, a scanning electromagnet that scans the charged particle beam; a monitoring apparatus including a position monitor that detects the passing position of a charged particle beam and the beam size thereof, a low-scattering gas filling chamber including the monitoring apparatus, and an irradiation management apparatus that controls irradiation of the charged particle beam; the particle beam irradiation apparatus is characterized in that the low-scattering gas filling chamber is changeably disposed in such a manner that the beam-axis-direction positional relationship between the monitoring apparatus and the vacuum window is a desired one and in that the low-scattering gas filling chamber is filled with a low-scattering gas.
摘要:
A particle beam scanning irradiation method includes the steps of calculating a planned irradiating particle count of a particle beam for each of irradiation spots, on the basis of a relative amount of particle beam irradiation and a prescription particle-beam dose determined from a particle-beam therapy plan; simulating an irradiation process of the particle beam at each irradiation spot, on the basis of the planned irradiating particle count and a beam current waveform of the particle beam, and calculating a particle count of the particle beam irradiating the diseased portion during a scan shift of the particle beam; correcting the planned irradiating particle count for each irradiation spot by using the irradiating particle count during the scan shift; converting the corrected planned-irradiation particle count into a count value used in a dose monitor; and irradiating the irradiation spot with the particle beam, on the basis of the converted count value.
摘要:
A particle beam scanning irradiation system includes a computer establishing a scanning sequence for irradiation of a tumor portion in a patient; and a particle beam irradiation device irradiating the tumor portion in accordance with the established scanning sequence of the particle beam. The computer selects all conceivable combinations of pairs of irradiation spots among the plurality of irradiation spots arranged in the tumor portion, and determines whether each path for the particle beam to shift between two spots constituting the selected pair passes through the tumor portion; determines a penalty matrix expressing whether each path passes through the tumor portion on the basis of the determination result; evaluates a function for the shift paths on the basis of an optimizing algorithm, and establishes the scanning sequence of the particle beam by an optimized solution of the function.
摘要:
A particle beam irradiation apparatus comprises a particle beam shielding member which shields a part of a particle beam which is scanned, a prompt signal detector which detects a prompt signal which is generated when the particle beam which is scanned collides with the particle beam shielding member and a signal comparison device which predicts and obtains a generation pattern of a prompt signal which is generated with a predetermined scanning pattern and stores as a signal time pattern for comparison, wherein the signal comparison device detects an abnormality of scanning of a particle beam or the particle beam shielding member by comparing a detected signal time pattern which is a time pattern of a signal which is detected by the prompt signal detector to a signal time pattern for comparison which is stored.
摘要:
A charged particle beam position monitor is provided with a plurality of position monitors and a beam data processing device that performs calculation processing of the state of a charged particle beam, based on a plurality of signals outputted from the position monitors. The beam data processing device includes a plurality of channel data conversion units that perform AD conversion processing of the plurality of signals outputted from the position monitors; a position size processing unit, for each of the position monitors, that calculates the beam position of the beam, based on voltage information obtained through the AD conversion processing; and an integrated control unit that controls the plurality of channel data conversion units in such a way that while the beam is irradiated onto an irradiation subject, AD conversion processing of the signals is performed at different timings for the respective position monitors.