Abstract:
A splice tape for joining two pavement tapes in an end-to-end manner comprises a first adhesive layer; and a reinforcing layer disposed on one major surface of the adhesive layer, wherein the first adhesive layer is capable of adhering to a concrete or asphalt surface, wherein the reinforcing layer adheres to a first adhesive portion of a first pavement tape and to a second adhesive portion of the second adhesive tape when deployed.
Abstract:
An adhesive composition for joining optical components is described. The adhesive composition comprises at least one epoxy resin, a visible light photoinitiating system comprising at least one of a cationic photoinitiator and a sensitizer, a polyol and at least 50 wt. % of a nanoparticle filler. The visible light photoinitiating system includes at least one of a cationic photoinitiator and a sensitizer and the nanoparticle filler comprises a first nanoparticle having a first nominal size and a second nanoparticle having a second size. The adhesive composition has a refractive index between 1.44 and 1.47 and a dn/dT of less than −2E−4 when cured.
Abstract:
A splice element for splicing a first and a second optical fiber comprises an alignment mechanism having a base plate and a clamp plate. At least one of the base plate and clamp plate is formed from a silica material and at least one of the base plate and clamp plate includes an alignment groove configured to receive the first and second optical fibers in an end-to-end manner. The splice element also comprises an optical adhesive disposed in at least a portion of the alignment groove, wherein the optical adhesive is curable via actinic radiation.
Abstract:
An optical network comprises a fiber distribution cable and a terminal assembly. The terminal assembly receives a plurality of optical fibers from the fiber distribution cable and distributes one or more individual fibers to one or more single fiber bare-fiber holders that hold and protect each single fiber prepared and configured for splicing via an individual splicing element. The splicing element includes an alignment mechanism having a base plate and a clamp plate. At least one of the base plate and clamp plate is formed from a silica material and at least one of the base plate and clamp plate includes an alignment groove or channel configured to receive the first and second optical fibers in an end-to-end manner. The splice element also comprises an optical adhesive disposed in at least a portion of the alignment groove, wherein the optical adhesive is curable via actinic radiation.
Abstract:
A communication enclosure is described that includes an enclosure body having a first body portion and a second body portion. An adapter mounting mechanism is disposed in the first body portion, and a connector adapter mounted into the mounting mechanism that is configured to accept an optical fiber connector. The enclosure includes at least one integrated tool for terminating field mountable optical fiber connectors wherein the at least one integrated tool is disposed on one of the first body portion and the second body portion. In an exemplary aspect, the at least one integrated tool is a connector polishing platform.
Abstract:
A device to strip the external coating layer off of a coated optical fiber is provided. The optical fiber coating removal device includes a one piece molded body having a first body portion connected to a second body portion by a flexible region and a blade secured in one of the first body portion and the second body portion wherein the blade includes a U-shaped slot having cutting edges on the inside of the slot, wherein the flexible portion allows the first and second body portions to move between an open state and a closed state for stripping an optical fiber.
Abstract:
Fiber management assembly comprises an optical fiber splitter, a splice holding section having a fiber splice device mounted therein, and a slack storage system. The optical fiber splitter, splice holding section and slack storage system are disposed on one of a tray and an interior surface of an enclosure body. In addition, patch panel tray having a patch panel comprising a plurality of adapters mounted thereon is provided, wherein a bare end of a splitter input fiber is routed via the slack storage system to a first end of the splice device, and wherein pre-connectorized splitter output fibers are routed to different adapters of the plurality of adapters.
Abstract:
A system for adhering a length of continuous substrate to a mounting surface is disclosed. The continuous substrate can be attached to a mounting surface by a regular array of spaced apart adhesive segments disposed longitudinally along the continuous substrate and between the mounting surface and the continuous substrate.
Abstract:
A communication enclosure is described that includes an enclosure body having a first body portion and a second body portion. An adapter mounting mechanism is disposed in the first body portion, and a connector adapter mounted into the mounting mechanism that is configured to accept an optical fiber connector. The enclosure includes at least one integrated tool for terminating field mountable optical fiber connectors wherein the at least one integrated tool is disposed on one of the first body portion and the second body portion. In an exemplary aspect, the at least one integrated tool is a connector polishing platform.
Abstract:
A ruggedized cable connection structure configured to direct mate first and second ruggedized optical fiber connectors is disclosed. The connection assembly has a housing having a channel extending from a first end of the housing through to the second end of the housing, an adapter secured within the channel near a midpoint of the housing to enable direct mating of the first and second ruggedized optical fiber connectors, and an integral mounting flange extending from the housing to allow connection to a mounting surface.