Abstract:
Support systems and stands for electronic devices include tilt hinges, lift arms, and their component parts. Some tilt hinges include assemblies for guiding and retaining bars or protrusions into preferred positioning within receiver openings to unify the parts, particularly as they move, and to reduce wobble or slop in the joints. Lift arms provide simplified and low-cost guidance and counterbalance mechanisms for controlling movement of the electronic device relative to the base of a stand. In some cases, the lift arms have sheaths to help protect or cover mechanisms while allowing additional space for the mechanisms within the lift arm. Other interconnection systems hide and protect a connector interface between the stand and the electronic device within a housing until unlocked and the connector is moved into an exposed position. These systems improve efficiency, comfort, ergonomics, accessibility, and user satisfaction of the electronic devices and their supports.
Abstract:
A system may include a finger device that is worn on a user's finger. The finger device may serve as a controller for a head-mounted device or other devices in the system. The finger device may have a foldable housing with hinge structures that allow portions of the housing to fold with respect to each other. Magnets or other bistability structures may be used to provide the folding housing with folding bistability. This allows the housing to be placed in a stable unfolded state that releases the finger or a stable folded state in which the housing snaps over the finger and holds the finger device in place. A base may be used to store the finger device for charging. The base may have deployment structures that help place the finger device on the user's finger for use.
Abstract:
Connector inserts having reliable contacts, as well as connector receptacles having improved magnetic circuits for use in electronic devices having a thin form factor. These and other examples can provide connector receptacles that can be easily aligned to an opening in an electronic device, as well as connector inserts and connector receptacles that can be readily manufactured.
Abstract:
An electronic device may have a fiber composite friction hinge with first and second members that rotate relative to each other about a hinge axis. The fiber composite hinge may have first and second sets of interdigitated elongated fingers. Holes in the elongated fingers may receive a shaft of a fastener. The fastener may be tightened to squeeze the elongated fingers together along the hinge axis. The fiber composite hinge may be formed from a fiber composite material such as carbon fiber composite material. Fibers in the composite material may be embedded in binder such as polymer binder. The fibers may wrap around the holes and fold back on themselves in the fingers. Actuators may be provided to adjust the positions of portions of the hinge members. The electronic device may have a flexible layer such as a flexible display that overlaps the hinge structure.
Abstract:
The described embodiments relate generally to methods to form magnetic assemblies. In particular, extreme cold work (aka cold spray) is used to enhance magnetic properties of a steel alloy (most notably 316L stainless steel and others) that can then be formed into useful shapes and embedded within a substrate without undue machining operations.
Abstract:
Embodiments described herein may take the form of an electromagnetic actuator that produces a haptic output during operation. Generally, an electromagnetic coil is wrapped around a central magnet array. A shaft passes through the central magnet array, such that the central array may move along the shaft when the proper force is applied. When a current passes through the electromagnetic coil, the coil generates a magnetic field. The coil is stationary with respect to a housing of the actuator, while the central magnet array may move along the shaft within the housing. Thus, excitation of the coil exerts a force on the central magnet array, which moves in response to that force. The direction of the current through the coil determines the direction of the magnetic field and thus the motion of the central magnet array.
Abstract:
An electronic device (such as a laptop) may selectively latch a base to a lid using a switchable magnet array. In particular, a drive circuit in the electronic device may apply at least a current pulse to a conductor that generates a magnetic field to reverse a direction of a remnant magnetization in the switchable magnet array. By reversing the direction of the remnant magnetization, the electronic device may selectively increase or decrease a magnetic field generated by the switchable magnet array at an attraction plate in the electronic device. This magnetic field may, in turn, result in an attractive force between the switchable magnet array and the attraction plate, thereby selectively latching the base and the lid when the base and the lid are proximate to each other.
Abstract:
An electronic device such as a portable computer including a base and a lid is provided. The electronic device also includes a hinge assembly that facilitates pivoting movement between the lid and the base. The hinge assembly includes a body and a shaft configured to respective engage one of the base and the lid. The hinge assembly also includes a clutch mechanism. The clutch mechanism may include a friction member that induces friction during movement of the lid to help retain the lid in a user-selected angular position with respect to the base. Further, the clutch mechanism may include a spring that extends through a cavity defined through the shaft. The spring may be affixed to the shaft at one end and affixed to the body at a second end. Thereby, movement of the lid may be assisted or opposed by torsion in the spring, so as to improve a user experience.
Abstract:
Magnetic elements and attractors may be employed to secure a top case and a bottom case of a housing of a personal computing device. The magnetic elements may include a magnet that produces a magnetic field and a shunt. The shunt may direct the magnetic field through an opening to a pocket in which the magnet is received. Accordingly, flux leakage may be reduced and the bottom case may be secured to the top case. Magnetic elements and attractors may also be employed to secure a lid portion of the portable computing device to the housing thereof. These magnetic elements and attractors may be centered with respect to proximal and distal edges thereof
Abstract:
The described embodiments relate generally to methods to form magnetic assemblies. In particular, extreme cold work (aka cold spray) is used to enhance magnetic properties of a steel alloy (most notably 316L stainless steel and others) that can then be formed into useful shapes and embedded within a substrate without undue machining operations.