Abstract:
This is directed to providing a cosmetic finish on a component constructed by connecting several elements. A single manufacturing process, such as machining or grinding, can be applied to the connected elements to remove material from some or all of the elements and to form a smooth and continuous surface across interfaces between the individual elements of the component. In some cases, settings of the material removal process can be adjusted based on the material of the component elements. For example, the settings can be adjusted based on the manufacturing or mechanical properties of each element material.
Abstract:
Housings for electronic devices are disclosed. According to one aspect, adjoining surfaces of electronic device housings can be mounted or arranged such that adjoining surfaces are flush to a high degree of precision. The electronic devices can be portable and in some cases handheld.
Abstract:
This is directed to providing a cosmetic finish on a component constructed by connecting several elements. A single manufacturing process, such as machining or grinding, can be applied to the connected elements to remove material from some or all of the elements and to form a smooth and continuous surface across interfaces between the individual elements of the component. In some cases, settings of the material removal process can be adjusted based on the material of the component elements. For example, the settings can be adjusted based on the manufacturing or mechanical properties of each element material.
Abstract:
Housings for electronic devices are disclosed. According to one aspect, adjoining surfaces of electronic device housings can be mounted or arranged such that adjoining surfaces are flush to a high degree of precision. The electronic devices can be portable and in some cases handheld.
Abstract:
Improved housings for electronic devices are disclosed. An electronic device housing can make use of at least one outer member (e.g., cover) that can be aligned, protected and/or secured with respect to other portions of the housing for the electronic device. In one embodiment, an electronic device housing can have one or more outer members (e.g., exposed major surfaces), such as front or back surfaces, that are formed of glass. Protective sides can be provided in some embodiments to protect the edges of the one or more glass surfaces so as to dissipate impact forces and thus reduce damage to the electronic device housing. The one or more glass surfaces can be part of outer member assemblies that can be secured to other portions of the electronic device housing. According to one aspect, adjoining surfaces of electronic device housings can be mounted or arranged such that adjoining surfaces are flush to a high degree of precision. The electronic device can be portable and in some cases handheld.
Abstract:
This is directed to providing a cosmetic finish on a component constructed by connecting several elements. A single manufacturing process, such as machining or grinding, can be applied to the connected elements to remove material from some or all of the elements and to form a smooth and continuous surface across interfaces between the individual elements of the component. In some cases, settings of the material removal process can be adjusted based on the material of the component elements. For example, the settings can be adjusted based on the manufacturing or mechanical properties of each element material.
Abstract:
Improved housings for electronic devices are disclosed. In one embodiment, an electronic device housing can have one or more outer members (e.g., exposed major surfaces), such as front or back surfaces, that are formed of glass. The one or more glass surfaces can be part of outer member assemblies that can be secured to other portions of the electronic device housing. In other embodiments, apparatus, systems and methods for robustly attaching a cover portion of an electronic device to a bottom portion, e.g., a housing portion, of the electronic device are described. The electronic device can be portable and in some cases handheld.
Abstract:
Improved housings for electronic devices are disclosed. An electronic device housing can make use of at least one outer member (e.g., cover) that can be aligned, protected and/or secured with respect to other portions of the housing for the electronic device. In one embodiment, an electronic device housing can have one or more outer members (e.g., exposed major surfaces), such as front or back surfaces, that are formed of glass. Protective sides can be provided in some embodiments to protect the edges of the one or more glass surfaces so as to dissipate impact forces and thus reduce damage to the electronic device housing. The one or more glass surfaces can be part of outer member assemblies that can be secured to other portions of the electronic device housing. According to one aspect, adjoining surfaces of electronic device housings can be mounted or arranged such that adjoining surfaces are flush to a high degree of precision. The electronic device can be portable and in some cases handheld.
Abstract:
A battery assembly for use in an electronic device. The battery assembly may include a battery cell, a battery connector for providing power from the battery cell to the electronic device, and a flex circuit electrically coupling the battery cell to the electronic device. The battery connector may be located adjacent the battery cell, and may include one or more alignment mechanisms so that conductive pads connector align properly with corresponding conductive elements of the electronic device. The battery cell may be fixed to the electronic device using an adhesive layer placed between the cell and the electronic device. A tab may extend beyond the periphery of the battery cell to allow a user to pull or peal the battery cell from the electronic device for replacement or repair.
Abstract:
An electronic device may include a proximity sensor for determining when a user's face is near the device. The sensor can include an emitter and a detector that are separated by a foam block to limit cross-talk between the emitter and detector. A sheet can be placed over the foam block to define openings for each of the emitter and detector. Some electronic devices can also include a camera. A glass cover secured to the device enclosure can protect the camera. To improve an adhesive bond between the glass cover and a metal enclosure, an ink layer can be placed between an adhesive and the glass. During assembly, the position of the camera can shift due to closing an enclosure. A grounding assembly that maintains contact with the camera in its initial and final positions may be provided.