Abstract:
An electronic device may include a display having an array of display pixels and having display control circuitry that controls the operation of the display. The display control circuitry may adaptively adjust the display output based on ambient lighting conditions. For example, in cooler ambient lighting conditions such as those dominated by daylight, the display may display neutral colors using a relatively cool white. When the display is operated in warmer ambient lighting conditions such as those dominated by indoor light sources, the display may display neutral colors using a relatively warm white. Adapting to the ambient lighting conditions may ensure that the user does not perceive color shifts on the display as the user's vision chromatically adapts to different ambient lighting conditions. Adaptively adjusting images in this way can also have beneficial effects on the human circadian rhythm by displaying warmer colors in the evening.
Abstract:
An electronic device may have a variable refresh rate display. Static content may be displayed on the display at a lower refresh rate than moving content to conserve power. The display may include an array of pixels. Display driver circuitry in the display may load image data into rows of the pixels. The display driver circuitry may have digital-to-analog converter circuitry that supplies data signals to the array. The display driver circuitry may respond to a variable refresh rate control signal that is asserted and deasserted depending on whether static or moving image content is to be displayed. The display driver circuitry may use the digital-to-analog converter circuitry to apply a time-varying scaling factor to the image data. The magnitude of the scaling factor may be adjusted during transitions between refresh rates to help suppress luminance variations that might otherwise result in flickering on the display.
Abstract:
A display may be provided with an active central region and a peripheral inactive region. The display may have one or more flexible edges in the peripheral inactive region. Conductive lines may pass between components in the active central region such as display pixels and touch sensor electrodes and components in the inactive peripheral region such as gate driver circuitry and patterned interconnect lines. Each conductive line may have an unbent segment on a portion of a display layer in the active central region and may have a segment on the bent edge of the display layer. The display layer may be formed from a polymer or other flexible material. The bent segments may be configured to be less susceptible to increases in resistance from bending than the unbent segments.
Abstract:
An electronic device may include a display. The display may be formed by an array of light-emitting diodes mounted to the surface of a substrate. The substrate may be a silicon substrate. Circuitry may be located in spaces between the light-emitting diodes. Circuitry may also be located on the rear surface of the silicon substrate and may be coupled to the array of light-emitting diodes using through-silicon vias. The circuitry may include integrated circuits and other components that are attached to the substrate and may include transistors and other circuitry formed within the silicon substrate. Touch sensor electrodes, light sensors, and other components may be located in the spaces between the light-emitting diodes. The substrate may be formed from a transparent material that allows image light to reach a lens and image sensor mounted below the substrate.
Abstract:
An electronic device may be provided with a display mounted in a housing. The display may include a liquid crystal display module and a reflective polarizer having an in-plane optical axis. The display may also include a backlight unit that includes a light source, a light guide element, and a reflector film coupled to a backside of the light guide element. The display may also include a light retardation layer such as a quarter wave film. The quarter wave film may be arranged between the reflective polarizer and the reflector film of the backlight unit. Partially polarized light that is output from a front side of the light guide element may have a first component parallel to the in-plane optical axis and a second component perpendicular to the in-plane optical axis of the reflective polarizer. The second component may be reflected from the reflective polarizer.
Abstract:
A display may have a first stage such as a color liquid crystal display stage and a second stage such as a monochromatic liquid crystal display stage that are coupled in tandem so that light from a backlight passes through both stages. The dynamic range of the display may be enhanced by using the second stage to perform local dimming operations. The pixel pitch of the second stage may be greater than the pixel pitch of the first stage to ease alignment tolerances and reduce image processing complexity. The color stage and monochromatic stages may share a polarizer. A color filter in the color stage may have an array of red, green, and blue elements or an array of white, red, green, and blue elements. The color stage may be a fringe field display and the monochrome stage may be an in-plane switching display or a twisted nematic stage.
Abstract:
An electronic device may be provided with a display such as a liquid crystal display. The liquid crystal display may have a color filter layer, a thin-film-transistor layer, and a layer of liquid crystal material between the color filter layer and the thin-film-transistor layer. A lower polarizer may be formed under the thin-film-transistor layer. An upper polarizer may be formed on the color filter layer. A shielding antireflection layer may be formed on the upper polarizer. The shielding antireflection layer may serve both as a shielding layer that protects against display damage due to electrostatic charge and as an antireflection coating that helps to minimize reflections from the surface of the display. The shielding antireflection layer may include low and high index of refraction layers and a conductive layer such as a transparent conductive oxide layer that provides shielding.
Abstract:
A method for testing photosensitivity of an electronic display module, such as a liquid crystal display module, is provided. In one embodiment, a method includes exposing a display module to light at a first intensity and measuring an amount of light transmitted through the display module. The method may also include exposing the display module to light at a second intensity and measuring an amount of that light transmitted through the display module. The measured amounts may then be compared to determine an optical property, such as photosensitivity, of the display panel. Various other methods, systems, and manufactures are also disclosed.
Abstract:
An electronic device may be provided with a display that has a layer of liquid crystal material interposed between a color filter layer and a thin-film-transistor layer. The thin-film-transistor layer may have a substrate with an upper surface and a lower surface. A circular polarizer may be formed on the upper surface. Thin-film transistor circuitry such as gate driver circuitry may be formed on the lower surface. A display driver circuit may be mounted on an inactive border region of the lower surface of the thin-film transistor substrate. Display pixels may form an array in a central active region of the display. A grid of metal gate and data lines may distribute signals from the display driver circuit and gate driver circuitry to the display pixels. A grid of non-reflecting lines may be interposed between the grid of metal lines and the lower surface.
Abstract:
Electronic packages and modules are described. In an embodiment, a hybrid thermal interface material including materials with different thermal conductivities is used to attach a lid to a device. In an embodiment, a low temperature solder material is included as part of an adhesion layer for attachment with a stiffener structure.