Abstract:
Systems, methods, and computer program products are for managing access to a femtocell coverage area. An exemplary method includes storing in a memory component a first identifier corresponding to a subscribed service of a communication device and a second identifier corresponding to a user of the communication device, and granting access to the femtocell coverage area using the second identifier.
Abstract:
Techniques provide for converged wireline and wireless services in part by employing a set-top box (STB) with machine-to-machine (M2M) communication. The STB, associated with an access point, such as a femtocell, can be used to send/receive messages, including video, to/from user equipment (UE) via a core network. A monitoring system includes a sensor component that is triggered under specified conditions, and the STB records events in response to the trigger, where a recorded event can be sent as a message to the UE. The STB or associated remote control can indicate a received message to a user, who can view the message on the STB, remote control, or associated television. A meter component is associated with the STB via the femtocell or other desired connection. The STB can receive and store utility meter readings for validation or dispute by the user.
Abstract:
Management services are provided during local breakout at a femto access point (FAP). In an aspect, the FAP facilitates policy management and employs a policy component to perform an analysis and enforce a set of policies for dynamically selecting an optimal route for traffic received at the FAP based on a decision-making process. Typically, the set of policies can specify different routes based on various factors, such as, but not limited to, type of traffic, current and/or future network resource availability, current time, day and/or date, location of the FAP, location of a UE sending/receiving the traffic, a lowest cost route, and/or route based on cost-benefit, etc. Further, a monitoring component is employed to observe the route employed by that traffic, which can be utilized by various services, such as, billing, Quality of Service, security management, address management, failure management and/or provisioning.
Abstract:
Service continuity when a user equipment (UE) employing local breakout mechanisms at a femto access point (FAP) for a communication session and moves out of the femto coverage area is disclosed. In particular, a network change detection component can be employed to detect when the UE, attached to the FAP, changes its connection from the femto network to the macro network. Further, an active communication session can exist between the UE and a device/service/application on a local Area network (LAN) connected to a FAP, and/or the Internet, which utilizes local breakout at the FAP. When the UE moves out of the femto network, a context management component can be employed to seamlessly resume the communication session, via the macro network.
Abstract:
Local breakout mechanisms can be performed by a femto access point (FAP) to facilitate efficient utilization of backhaul and/or macro networks. In particular, a slave Gateway GPRS Support Node (GGSN) can be integrated within the FAP to directly route the incoming traffic from a user equipment (UE) at the FAP. In one example, Internet bound traffic can be directly routed to the Internet, without employing macro network resources. Further, the system can avoid hairpinning by routing traffic between the UE and a home Local Area Network (LAN) by a anchoring a call or a session in the slave GGSN and facilitate integration of UEs with home applications by employing a UE Digital Home Agent. In addition, the FAP can perform UE-to-UE CS media breakout to facilitate communication between UEs attached to the FAP, without routing the traffic through the core macro network.
Abstract:
Service continuity is provided when a user equipment (UE), employing local breakout mechanisms at a femto access point (FAP) for a communication session, moves out of the femto coverage area. In particular, a network change detection component can be employed to detect when the UE, attached to the FAP, changes its connection from the femto network to the macro network. Further, an active communication session can exist between the UE and a device/service/application on a local Area network (LAN) connected to a FAP, and/or the Internet, which utilizes local breakout at the FAP. When the UE moves out of the femto network, a context management component can be employed to seamlessly resume the communication session, via the macro network.
Abstract:
Service continuity is provided when a user equipment (UE), employing local breakout mechanisms at a femto access point (FAP) for a communication session, moves out of the femto coverage area. In particular, a network change detection component can be employed to detect when the UE, attached to the FAP, changes its connection from the femto network to the macro network. Further, an active communication session can exist between the UE and a device/service/application on a local Area network (LAN) connected to a FAP, and/or the Internet, which utilizes local breakout at the FAP. When the UE moves out of the femto network, a context management component can be employed to seamlessly resume the communication session, via the macro network.
Abstract:
Aspects of the subject disclosure include, for example, identifying a primary serving cell and a secondary serving cell, wherein the primary serving cell facilitates one of attachment, re-attachment or mobility, or any combination thereof, of a mobile device in association with coordination of a wireless service between the primary serving cell, the secondary serving cell and the mobile device. A latency value associated with a message exchange is determined between the primary and secondary serving cells via a messaging interface, and compared to latency requirements, which correspond to a group of mobile service features. A mobile service feature of the group is associated with the wireless service based on the comparison. The wireless service includes a coordinated exchange of wireless signals between the primary serving cell and the mobile device and between the secondary serving cell and the mobile device based on the mobile service feature. Other embodiments are disclosed.
Abstract:
An inter-cell interference coordination procedure in heterogeneous networks (HetNets) is enhanced based on utilization of cell profile data associated with neighbor access points to improve HetNet spectrum efficiency, mobility performance, and/or overall network capacity. In one aspect, a macro access point can receive cell profile data associated with neighbor access points and modify a power level of reduced-power almost blank subframes (ABS) transmitted by the macro access point to manage macro cell capacity. Further, the macro access point can configure the ABS pattern and transmit the ABS pattern to the neighbor access points. Based on the ABS pattern, the neighbor access points can schedule transmissions to user equipment that are located at (or close to) their cell-edge to reduce inter-cell interference.
Abstract:
Concepts and technologies disclosed herein are directed to service aware carrier aggregation. According to one aspect disclosed herein, an eNodeB (“eNB”) can learn, via a primary serving cell (“PSC”), that a user equipment (“UE”) has a capability to utilize a carrier aggregation feature. The eNB can receive policy information and service information, and can learn, via the PSC, a service requested by the UE. The eNB can determine, based at least in part upon the policy information, the service information, and the service, whether to implement the carrier aggregation feature to provide the service to the UE. When the eNB determines that the carrier aggregation feature is to be implemented, the eNB can inform the UE to reconfigure a radio resource control (“RRC”) configuration to include the PSC and a secondary serving cell (“SSC”). The eNB can allocate physical media resources for the service from the PSC and the SSC.