摘要:
This invention is directed to security features that are formed, created, printed from inks comprising metallic particles and/or metallic nanoparticles. Preferably, the security feature is a reflective security features that comprises metallic nanoparticles where the reflective security features are formed by a direct-writing process, e.g., an ink jet printing process, using an ink comprising metallic nanoparticles. The invention is also directed to the use of these security features in many applications and to processes for making them.
摘要:
Processes for controlling ink migration during the formation of printable electronic features. In a preferred aspect, the invention is to a process for forming at least a portion of an electronic feature. The process includes the steps of: (a) providing a first substrate having a first surface; (b) modifying the first surface to form a modified surface; and (c) applying an ink to at least a portion of the modified surface, wherein the modified surface interacts with the ink to inhibit lateral and/or longitudinal migration of the applied ink, and wherein the applied ink forms at least a portion of the electronic feature. In another aspect, the invention is to a process for encouraging electronic ink spreading with a surfactant.
摘要:
Compositions, inks and methods for forming a patterned silicon-containing film and patterned structures including such a film. The composition generally includes (a) passivated semiconductor nanoparticles and (b) first and second cyclic Group IVA compounds in which the cyclic species predominantly contains Si and/or Ge atoms. The ink generally includes the composition and a solvent in which the composition is soluble. The method generally includes the steps of (1) printing the composition or ink on a substrate to form a pattern, and (2) curing the patterned composition or ink. In an alternative embodiment, the method includes the steps of (i) curing either a semiconductor nanoparticle composition or at least one cyclic Group IVA compound to form a thin film, (ii) coating the thin film with the other, and (iii) curing the coated thin film to form a semiconducting thin film. The semiconducting thin film includes a sintered mixture of semiconductor nanoparticles in hydrogenated, at least partially amorphous silicon and/or germanium. The thin film exhibits improved conductivity, density, adhesion and/or carrier mobility relative to an otherwise identical structure made by an identical process, but without either the semiconductor nanoparticles or the hydrogenated Group IVA element polymer. The present invention advantageously provides semiconducting thin film structures having qualities suitable for use in electronics applications, such as display devices or RF ID tags, while enabling high-throughput printing processes that form such thin films in seconds or minutes, rather than hours or days as with conventional photolithographic processes.
摘要:
Methods for making metal-based nanoparticles and inks are disclosed. In accordance with the method of the present invention, molecular metal precursors are reduced in the presence of a reaction medium to form the nanoparticles. The molecular metal precursors are preferably reduced by heating the metal precursor in the medium, by adding a reducing agent, such an aldehyde or a combination thereof. Metal precursor are preferably metal oxides, transition metal complexes or combination thereof. The method of the present invention is used to make high yield nanoparticles with a range of particle size distributions. Nanoparticle formed by the present invention include mixtures of nanoparticle, alloy nanoparticles, metal core shell nanoparticles or nanoparticle comprising a single metal species.
摘要:
A particulate composition comprises a plurality of particles wherein at least one of the particles comprises at least two different crystalline and/or glass phases, each phase comprising a host lattice and a dopant sensitive to electromagnetic radiation. The different phases simultaneously produce different responses on exposure to photons of the same energy, whereby the output from the particulate composition when exposed to said photons is the sum of the responses from the different phases.
摘要:
Compositions, inks and methods for forming a patterned silicon-containing film and patterned structures including such a film. The composition generally includes (a) passivated semiconductor nanoparticles and (b) first and second cyclic Group IVA compounds in which the cyclic species predominantly contains Si and/or Ge atoms. The ink generally includes the composition and a solvent in which the composition is soluble. The method generally includes the steps of (1) printing the composition or ink on a substrate to form a pattern, and (2) curing the patterned composition or ink. In an alternative embodiment, the method includes the steps of (i) curing either a semiconductor nanoparticle composition or at least one cyclic Group IVA compound to form a thin film, (ii) coating the thin film with the other, and (iii) curing the coated thin film to form a semiconducting thin film. The semiconducting thin film includes a sintered mixture of semiconductor nanoparticles in hydrogenated, at least partially amorphous silicon and/or germanium. The thin film exhibits improved conductivity, density, adhesion and/or carrier mobility relative to an otherwise identical structure made by an identical process, but without either the semiconductor nanoparticles or the hydrogenated Group IVA element polymer. The present invention advantageously provides semiconducting thin film structures having qualities suitable for use in electronics applications, such as display devices or RF ID tags, while enabling high-throughput printing processes that form such thin films in seconds or minutes, rather than hours or days as with conventional photolithographic processes.
摘要:
A self-aligning nanowire includes a nanowire portion and an aligning member attached to the nanowire portion. The aligning member interacts with another aligning member on an adjacent self-aligning nanowire to align the nanowires together. A method of aligning nanowires includes providing a plurality of the self-aligning nanowires, suspending the plurality in a carrier solution, and depositing the suspended plurality on a substrate. An ink formulation includes the plurality of suspended self-aligning nanowires in the carrier solution. A method of producing the self-aligning nanowire includes providing and associating the nanowire portion and the aligning member such that the nanowire produced is self-aligning with another nanowire.
摘要:
The present invention is directed to methods for making electronic devices with a thin anisotropic conducting layer interface layer formed between a substrate and an active device layer that is preferably patterned conductive layer. The interface layer preferably provides Ohmic and/or rectifying contact between the active device layer and the substrate and preferably provides good adhesion of the active device layer to the substrate. The active device layer is preferably fashioned from a nanoparticle ink solution that is patterned using embossing methods or other suitable printing and/or imaging methods. The active device layer is preferably patterned into an array of gate structures suitable for the fabrication of thin film transistors and the like.
摘要:
A process for the production of metal nanoparticles. The process comprises a rapid mixing of a solution of at least about 0.1 mole of a metal compound that is capable of being reduced to a metal by a polyol with a heated solution of a polyol and a substance that is capable of being adsorbed on the nanoparticles.
摘要:
A metal nanoparticle composition for the fabrication of conductive features. The metal nanoparticle composition advantageously has a low viscosity permitting deposition of the composition by direct-write tools. The metal nanoparticle composition advantageously also has a low conversion temperature, permitting its deposition and conversion to an electrical feature on polymeric substrates.