Abstract:
A foldable display has a foldable area. The foldable display includes: a flexible display screen having a display surface and a back surface opposite to the display surface; a foldable mechanism fastened on the back surface of the flexible display screen; and a elastic portion disposed between the foldable mechanism and the flexible display screen. The elastic portion is connected to the foldable mechanism and the flexible display screen. At least a part of the elastic portion is located in the foldable area. The at least a part of the elastic portion located in the foldable area is configured to elastically deform as the flexible display screen and the foldable mechanism are synchronously switched between a folded state and a flattened out state.
Abstract:
An array substrate, a display panel, a display device, a method for manufacturing the array substrate and a method for manufacturing the display panel are provided. The array substrate includes a base substrate, and an organic layer and a passivation layer arranged above the base substrate. The base substrate includes a display region and a non-display region surrounding the display region. Each of the organic layer and the passivation layer is arranged in both the display region and the non-display region. A groove is arranged in the organic layer and the passivation layer in the non-display region, the groove penetrates the organic layer and the passivation layer and is of a closed pattern surrounding the display region. The groove is to be filled with a sealing material.
Abstract:
The present disclosure provides a flexible display device, wherein there is a flexible support structure fixed on a surface of the flexible display module, which is used to disperse stress. During use of the flexible display device, the flexible support structure can be used to disperse the point force or linear force that the flexible display device is subject to when being bent into even planar force. Besides, the flexible support structure can reduce the stress exerted on the flexible display module, avoiding delamination among the film layers caused by local stress concentration on the flexible display module. In addition, given the same thickness of the flexible display module, the flexible display device can be bent to a smaller bending radius.
Abstract:
The present invention relates to the field of display technology, and particularly provides a flexible substrate, an OLED device including the flexible substrate and a defect detecting method for the same. The flexible substrate comprises a bottom plate and a barrier layer arranged above the bottom plate, wherein the flexible substrate further comprises a crack detection layer, which is arranged adjacent to the barrier layer; the crack detection layer produces a crack when the barrier layer produces a crack; and the color of the crack detection layer with a crack is different from that of the crack detection layer without a crack in a power-on state. The flexible substrate and the OLED device have relatively high detection efficiency, and can ensure the accuracy of detection, so that the rate of qualified products of the flexible substrate and the OLED device are improved.
Abstract:
A method for manufacturing a flexible display panel and the flexible display device are disclosed. The method for manufacturing the flexible display panel includes: forming a substrate, a flexible display and an overcoat layer on a support substrate in sequence; flipping over so that one side provided with the support substrate is placed upward; stripping off the support substrate; coating a curable material on a surface obtained after the support substrate is stripped off; and performing a curing process so that the coated curable material is cured to form a protective film. The method for manufacturing the flexible display panel can form the protective film without adopting laminating/bonding devices, is simple and easy, and does not require the vacuum defoamation process subsequently.
Abstract:
The invention provides a vinyl ether group-containing copolymer, preparation process and use thereof. The copolymer comprises of the structural units represented by the following general formulae I, II and III, wherein, R1 is O or HN, R2 is an alkyl group with a carbon atom number of 1-4, cyclohexyl or a group represented by the following general formula IV (m represents a positive integer of 1-3), n is a positive integer of 1-4, the molar numbers of the structural units represented by the general formulae I, II and III are x, y and z, respectively, and x:y:z=3-8:1-4:1-5, the weight average molecular weight of the copolymer is 5000-20000. A color light blocking agent added with the copolymer can increase sensitivity. Furthermore, the copolymer has solubility in an alkaline solution, and thus, the color light blocking agent added with the copolymer has a superior developing property.
Abstract:
Disclosed is a flexible display substrate and a method for manufacturing the same which can avoid break and peeling of film layers disposed on a flexible base and further reduce degree of a warpage occurred in the flexible base when separating the support substrate from the flexible base located above the support substrate. The flexible display substrate comprises the flexible base, a first buffer layer and a second buffer layer disposed on an upper surface and a lower surface of the flexible base, respectively, and a plurality of display modules disposed on the first buffer layer, each display module includes at least one thin film transistor and at least one electrode corresponding to the thin film transistor.
Abstract:
The invention discloses a peeling liquid for a resist, which relates to an optical element and is used for removing the color resist and the protective layer on a color filter rapidly and efficiently. The peeling liquid for a color resist on a color filter comprises an alkali metal alkoxide with a mass percentage of 10-45%, an organic amine with a mass percentage of 10-30%, a surfactant with a mass percentage of 5-30%, a solvent with a mass percentage of 20-60%, and an alcohol with a mass percentage of 1-55% in terms of the peeling liquid for a resist with a mass percentage of 100%. The peeling liquid for a resist in invention is used for removing the color resist and the protective layer of the substandard product in a color filter.
Abstract:
The invention provides a vinyl ether group-containing copolymer, preparation process and use thereof. The copolymer comprises of the structural units represented by the following general formulae I, II and III, wherein, R1 is O or HN, R2 is an alkyl group with a carbon atom number of 1-4, cyclohexyl or a group represented by the following general formula IV (m represents a positive integer of 1-3), n is a positive integer of 1-4, the molar numbers of the structural units represented by the general formulae I, H and III are x, y and z, respectively, and x:y:z=3-8:1-4:1-5, the weight average molecular weight of the copolymer is 5000-20000. A color light blocking agent added with the copolymer can increase sensitivity. Furthermore, the copolymer has solubility in an alkaline solution, and thus, the color light blocking agent added with the copolymer has a superior developing property.
Abstract:
Embodiments of the present disclosure provide a display substrate motherboard and a manufacturing method and a cutting method thereof, a display substrate and a display device. The display substrate motherboard includes a preset cutting position, a back film and an adhesive layer disposed on the back film, the adhesive layer includes: a first adhesive layer corresponding to the preset cutting position; a second adhesive layer disposed on two sides of the first adhesive layer in a direction parallel to the back film; and a first light blocking layer disposed between the first adhesive layer and the second adhesive layer, wherein the first light blocking layer is configured to reduce light entering the second adhesive layer through the first light blocking layer after being incident from the first adhesive layer.