Abstract:
A nano/micro-patterned optical device includes a soft film substrate and nano/micro thin wires. A surface of the soft film substrate includes a nano/micro-pattern formed through a lithography process, and the nano/micro-pattern includes a plurality of depressed grooves. The nano/micro thin wires are placed in the depressed grooves, and used to form a plurality of optical waveguides, in which the optical waveguides include at least one optical coupling region, and the optical coupling region is located on a joining position of the optical waveguides. A fabrication method of the nano/micro-patterned optical device is also provided.
Abstract:
A photosensitive material for use in semiconductor manufacture comprises a copolymer that includes a plurality of photoresist chains and a plurality of hydrophobic chains, each hydrophobic chain attached to the end of one of the photoresist chains. The copolymer in response to externally applied energy will self-assemble to a photoresist layer and a hydrophobic layer.
Abstract:
A method of lithography patterning includes forming a first resist pattern on a substrate, the first resist pattern including a plurality of openings therein on the substrate; forming a second resist pattern on the substrate and within the plurality of openings of the first resist pattern, the second resist pattern including at least one opening therein on the substrate; and removing the first resist pattern to uncover the substrate underlying the first resist pattern.
Abstract:
A system and method for automatic SPC chart generation including a storage device and a data acquisition module. The storage device stores a chamber management tree, a recipe window management tree, a parameter configuration table and multiple chart profile records. The data acquisition module, which resides in a memory, acquires multiple process events and parameter values corresponding to the process events and a process parameter, selects a relevant statistical algorithm, calculates a statistical value by applying the statistical algorithm to the parameter values, creates a new chart profile record and a parameter statistics record therein if the chart profile record is absent, and stores the statistical values and measured time in the parameter statistics record.
Abstract:
A method for forming dual damascene structures within a semiconductor device utilizes a plug material that is soluble in alkaline developers such as 2.38 wt % TMAH. The plug material is introduced into openings initially formed in a dielectric film and extends up to at least the top surface of the dielectric film. The plug material is polymeric in nature and is baked to cross link the polymeric material. The dielectric layer with openings filled with the cross-linked plugged material is patterned and etched to produce dual damascene openings.
Abstract:
A method is described for reducing the space width of holes in a first resist pattern and simultaneously removing unwanted holes to change the pattern density in the resulting second pattern. This technique provides holes with a uniform space width as small as 100 nm or less that is independent of pattern density in the second pattern. A positive resist is patterned to form holes with a first pattern density and first space width. A water soluble negative resist is coated over the first resist and selectively exposed to form a second patterned layer consisting of water insoluble plugs in unwanted holes in the first pattern and a thin water insoluble layer on the first resist pattern in unexposed portions. The plugs may form dense and isolated hole arrays while the thin insoluble layer reduces space width to the same extent in remaining holes in the second pattern.
Abstract:
A continuous manufacturing method is provided by extruding a composite optical fiber from two polymeric solutions containing two different monomers having different refractive indices, and then allowing the monomers to diffuse in a diffusion region such that the two monomers are diffused into each other before the optical fiber is hardened.
Abstract:
A catalyst composition for use in the preparation of poly(butylene terephthalate) from dimethyl terephthalate, comprising: (a) a titanium compound primary catalyst, from about 0.01 PHR to about 1 PHR; and (b) an alkali metal phosphate or alkali metal phosphite co-catalyst, from about 0.001 PHR to about 1 PHR; wherein PHR represents parts of the primary catalyst or the co-catalyst per one hundred parts, by weight, of dimethyl terephthalate. Preferred titanium compounds include tetrabutyl titanate or tetra(isopropyl) titanate; the alkali metal phosphate can be a phosphate salt containing one, two, or three metal groups; and the alkali metal phosphite can be a phosphite salt containing one or two metal groups. With this catalyst composition, the transesterification rate was increased by 10 percent or more. Furthermore, the reaction product poly(butylene terephthalate) shows an increased intrinsic viscosity over those without the co-catalyst, indicating a greater degree of polymerization.
Abstract:
A method for the preparation of metallic salts of fatty acids comprising the steps of: (a) reacting alkali hydroxide with a fatty acid in a saponification reaction to form an alkali soap; (b) reacting the alkali soap with an aqueous metallic salt solution in a double decomposition reaction to cause the production of metallic fatty acid salt; (c) performing at least one cycle of an alternating alkalinization-acidization reaction by adding an aqueous alkali hydroxide solution to the metallic fatty acid salt to raise the solution pH, followed by adding an acidic aqueous salt solution contain the same metal ions to lower the solution pH. High purity metallic salts of fatty acids can be obtained without a solvent washing step and the metallic fatty acid salts prepared from this invention can be effectively used as photolyzing agent to initiate and/or accelerate the photo-degradation of plastics.
Abstract:
A thermal probe includes a support element, a conductive pattern and a tip. The conductive pattern is disposed at the support element and has plural bending portions. The tip has a base and a pinpoint. The base has a first surface and a second surface which is opposite to the first surface. The pinpoint is disposed at the first surface. The second surface is connected with the conductive pattern. The bending portions are contacted with the first surface. The tip of the thermal probe is replaceable, and the user can choose the optimum combination of the tip, conductive pattern and support element according to their needs.