Abstract:
A personal audio device, such as a wireless telephone, includes noise canceling that adaptively generates an anti-noise signal from a reference microphone signal and injects the anti-noise signal into the speaker or other transducer output to cause cancellation of ambient audio sounds. An error microphone is provided proximate the speaker to measure the output of the transducer in order to control the adaptation of the anti-noise signal and to estimate an electro-acoustical path from the noise canceling circuit through the transducer. The anti-noise signal is adaptively generated to minimize the ambient audio sounds at the error microphone. A processing circuit that performs the adaptive noise canceling (ANC) function also filters one or both of the reference and/or error microphone signals, to bias the adaptation of the adaptive filter in one or more frequency regions to alter a degree of the minimization of the ambient audio sounds at the error microphone.
Abstract:
A personal audio device including multiple output transducers for reproducing different frequency bands of a source audio signal, includes an adaptive noise canceling (ANC) circuit that adaptively generates an anti-noise signal for each of the transducers from at least one microphone signal that measures the ambient audio to generate anti-noise signals. The anti-noise signals are generated by separate adaptive filters such that the anti-noise signals cause substantial cancellation of the ambient audio at their corresponding transducers. The use of separate adaptive filters provides low-latency operation, since a crossover is not needed to split the anti-noise into the appropriate frequency bands. The adaptive filters can be implemented or biased to generate anti-noise only in the frequency band corresponding to the particular adaptive filter. The anti-noise signals are combined with source audio of the appropriate frequency band to provide outputs for the corresponding transducers.
Abstract:
An adaptive noise canceling (ANC) circuit adaptively generates an anti-noise signal from a reference microphone signal that is injected into the speaker or other transducer output to cause cancellation of ambient audio sounds. An error microphone proximate the speaker provides an error signal. A secondary path estimating adaptive filter estimates the electro-acoustical path from the noise canceling circuit through the transducer so that source audio can be removed from the error signal. Tones in the source audio, such as remote ringtones, present in downlink audio during initiation of a telephone call, are detected by a tone detector using accumulated tone persistence and non-silence hangover counting, and adaptation of the secondary path estimating adaptive filter is halted to prevent adapting to the tones. Adaptation of the adaptive filters is then sequenced so any disruption of the secondary path adaptive filter response is removed before allowing the anti-noise generating filter to adapt.
Abstract:
A personal audio device, such as a headphone, includes an adaptive noise canceling (ANC) circuit that adaptively generates an anti-noise signal using one or more microphone signals that measure the ambient audio. The anti-noise signal is combined with source audio to provide an output for a speaker. The anti-noise signal causes cancellation of ambient audio sounds that appear in the microphone signals. A processing circuit uses the reference microphone to generate the anti-noise signal using one or more adaptive filters. The processing circuit also includes low-pass filters that remove quantization noise images at the output of the adaptive filter to reduce the dynamic range required at the output of the adaptive filter.
Abstract:
A personal audio device, such as a wireless telephone, includes noise canceling circuit that adaptively generates an anti-noise signal from a reference microphone signal and injects the anti-noise signal into the speaker or other transducer output to cause cancellation of ambient audio sounds. An error microphone may also be provided proximate the speaker to measure the output of the transducer in order to control the adaptation of the anti-noise signal and to estimate an electro-acoustical path from the noise canceling circuit through the transducer. A processing circuit that performs the adaptive noise canceling (ANC) function also either adjusts the frequency response of the anti-noise signal with respect to the reference microphone signal, and/or by adjusting the response of the adaptive filter independent of the adaptation provided by the reference microphone signal.
Abstract:
An adaptive noise canceling (ANC) circuit adaptively generates an anti-noise signal from a reference microphone signal that is injected into the speaker or other transducer output to cause cancellation of ambient audio sounds. An error microphone proximate the speaker provides an error signal. A secondary path estimating adaptive filter estimates the electro-acoustical path from the noise canceling circuit through the transducer so that source audio can be removed from the error signal. Tones in the source audio, such as remote ringtones, present in downlink audio during initiation of a telephone call, are detected by a tone detector using accumulated tone persistence and non-silence hangover counting, and adaptation of the secondary path estimating adaptive filter is halted to prevent adapting to the tones. Adaptation of the adaptive filters is then sequenced so any disruption of the secondary path adaptive filter response is removed before allowing the anti-noise generating filter to adapt.
Abstract:
A personal audio device, such as a wireless telephone, includes an adaptive noise canceling (ANC) circuit that adaptively generates an anti-noise signal from a reference microphone signal and injects the anti-noise signal into the speaker or other transducer output to cause cancellation of ambient audio sounds. An error microphone is also provided proximate the speaker to measure the ambient sounds and transducer output near the transducer, thus providing an indication of the effectiveness of the noise canceling. A processing circuit uses the reference and/or error microphone, optionally along with a microphone provided for capturing near-end speech, to determine whether the ANC circuit is incorrectly adapting or may incorrectly adapt to the instant acoustic environment and/or whether the anti-noise signal may be incorrect and/or disruptive and then take action in the processing circuit to prevent or remedy such conditions.
Abstract:
A personal audio device, such as a wireless telephone, includes an adaptive noise canceling (ANC) circuit that adaptively generates an anti-noise signal from an output of a microphone that measures ambient audio. The anti-noise signal is combined with source audio to provide an output for a speaker. The anti-noise signal causes cancellation of ambient audio sounds that appear at the microphone. A processing circuit estimates a level of background noise from the microphone output and sets a power conservation mode of the personal audio device in response to detecting that the background noise level is lower than a predetermined threshold.
Abstract:
An adaptive noise canceller adapts a secondary path modeling response using ambient noise, rather than using another noise source or source audio as a training source. Anti-noise generated from a reference microphone signal using a first adaptive filter is used as the training signal for training the secondary path response. Ambient noise at the error microphone is removed from an error microphone signal, so that only anti-noise remains. A primary path modeling adaptive filter is used to modify the reference microphone signal to generate a source of ambient noise that is correlated with the ambient noise present at the error microphone, which is then subtracted from the error microphone signal to generate the error signal. The primary path modeling adaptive filter is previously adapted by minimizing components of the error microphone signal appearing in an output of the primary path adaptive filter while the anti-noise signal is muted.
Abstract:
A personal audio device, such as a wireless telephone, includes an adaptive noise canceling (ANC) circuit that adaptively generates an anti-noise signal from a reference microphone signal and injects the anti-noise signal into the speaker or other transducer output to cause cancellation of ambient audio sounds. An error microphone is also provided proximate to the speaker to provide an error signal indicative of the effectiveness of the noise cancellation. A secondary path estimating adaptive filter is used to estimate the electro-acoustical path from the noise canceling circuit through the transducer so that source audio can be removed from the error signal. Adaptation of adaptive filters is sequenced so that update of their coefficients does not cause instability or error in the update. A level of the source audio with respect to the ambient audio can be determined to determine whether the system may generate erroneous anti-noise and/or become unstable.