Abstract:
According to embodiments, a method of making a coated pharmaceutical container, may include: forming a glass tube; forming the glass tube into a pharmaceutical container comprising an interior surface and an exterior surface; and applying a coating to the exterior surface. The coating may have a coefficient of friction less than or equal to 0.7 relative to a second pharmaceutical container when tested in a vial-on-vial testing jig under a normal load of 30 N. The coated pharmaceutical container may be thermally stable after depyrogenation at a temperature of at least 260° C. for 30 minutes in air.
Abstract:
Coated glass pharmaceutical packages are disclosed. According to embodiments, a coated glass pharmaceutical package may include a glass container formed from one of a borosilicate glass composition that meets Type 1 criteria according to USP or an alkali aluminosilicate glass having a Class HGA 1 hydrolytic resistance when tested according to the ISO 720-1985 testing standard. A low-friction coating may be bonded to the exterior surface of the glass container. The low-friction coating may include a polymer. The exterior surface of the glass container with the low-friction coating may have a coefficient of friction of less than or equal to 0.7. The coated glass pharmaceutical package may be thermally stable after depyrogenation in air at a temperature of at least about 260° C. for 30 minutes.
Abstract:
A glass-film laminate or article having a narrow failure distribution or a Weibull modulus of greater than 10. In embodiments, the glass-film laminate or article includes at least one first film disposed on a strengthened glass substrate. A first film or any additional films can exhibit an average strain-to-failure that is less than the strain-to-failure of the strengthened glass substrate. In embodiments, the first first film is adhered to the glass substrate such that the first film does not exhibit visible delamination from the glass substrate. Methods of forming glass-film laminates or articles with a desired strength level and narrow failure strength distrubution are also disclosed.
Abstract:
Disclosed are alkali aluminosilicate glasses having unexpected resistance to indentation cracking. The glasses obtain this high resistance as a result of a high level of surface compression accompanied by a shallow depth of layer. The advantaged glasses show greater resistance to radial crack formation from Vickers indentation than glasses with the same compressive stress, but higher depths of layer.
Abstract:
Disclosed are alkali aluminosilicate glasses having unexpected resistance to indentation cracking. The glasses obtain this high resistance as a result of a high level of surface compression accompanied by a shallow depth of layer. The advantaged glasses show greater resistance to radial crack formation from Vickers indentation than glasses with the same compressive stress, but higher depths of layer.
Abstract:
Low-friction coatings and glass articles with low-friction coatings are disclosed. According to one embodiment, a coated glass article may include a glass body comprising a first surface and a low-friction coating positioned on at least a portion of the first surface of the glass body. The low-friction coating may include a polymer chemical composition. The coated glass article may be thermally stable at a temperature of at least about 260° C. for 30 minutes. A light transmission through the coated glass article may be greater than or equal to about 55% of a light transmission through an uncoated glass article for wavelengths from about 400 nm to about 700 nm. The low-friction coating may have a mass loss of less than about 5% of its mass when heated from a temperature of 150° C. to 350° C. at a ramp rate of about 10° C./minute.
Abstract:
A coated glass pharmaceutical package may include a body formed from borosilicate glass that meets the Type 1 criteria according to USP . The body may have an interior surface and an exterior surface. A low-friction coating having a thickness of less than 100 microns may be positioned on at least a portion of the exterior surface. The portion of the exterior surface with the low-friction coating may have a coefficient of friction that is at least 20% less than an uncoated glass pharmaceutical package formed from the same glass composition and the coefficient of friction may not increase by more than 30% after undergoing a depyrogenation cycle at a temperature of from 250° C. to 400° C. for a time period of from 30 seconds to 72 hours.
Abstract:
Glass pharmaceutical packages with coatings are disclosed herein. According to one embodiment, the glass pharmaceutical package includes a glass body enclosing an inner volume and having an exterior surface. A coating may be positioned on at least a portion of the exterior surface of the glass body. The coating may include a coupling agent layer having a first thickness of greater than or equal to 25 nm and less than or equal to 100 nm. A polymer layer having a second thickness of less than 50 nm may be positioned over the coupling agent layer.
Abstract:
One or more aspects of the disclosure pertain to an article including a film disposed on a glass substrate, which may be strengthened, where the interface between the film and the glass substrate is modified, such that the article has an improved average flexural strength, and the film retains key functional properties for its application. Some key functional properties of the film include optical, electrical and/or mechanical properties. In one or more embodiments, interface exhibits the effective adhesion energy is about less than about 4 J/m2. In some embodiments, the interface is modified by the inclusion of a crack mitigating layer between the glass substrate and the film.
Abstract translation:本公开的一个或多个方面涉及一种包括设置在玻璃基板上的膜的制品,其可以被加强,其中膜和玻璃基板之间的界面被改性,使得制品具有改善的平均弯曲强度,以及 该片保留了其应用的关键功能特性。 膜的一些关键功能特性包括光学,电学和/或机械性质。 在一个或多个实施方案中,界面表现出约小于约4J / m 2的有效粘附能。 在一些实施方案中,通过在玻璃基底和膜之间包含裂纹缓解层来修饰界面。
Abstract:
One or more aspects of the disclosure pertain to an article including a film disposed on a glass substrate, which may be strengthened, where the interface between the film and the glass substrate is modified, such that the article has an improved average flexural strength, and the film retains key functional properties for its application. Some key functional properties of the film include optical, electrical and/or mechanical properties. In one or more embodiments, the interface exhibits an effective adhesion energy of about less than about 4 J/m2. In some embodiments, the interface is modified by the inclusion of a crack mitigating layer containing an inorganic material between the glass substrate and the film.
Abstract translation:本公开的一个或多个方面涉及一种包括设置在玻璃基板上的膜的制品,其可以被加强,其中膜和玻璃基板之间的界面被改性,使得制品具有改善的平均弯曲强度,以及 该片保留了其应用的关键功能特性。 膜的一些关键功能特性包括光学,电学和/或机械性质。 在一个或多个实施方案中,界面表现出约小于约4J / m 2的有效粘附能。 在一些实施方案中,通过在玻璃基底和膜之间包含含有无机材料的裂纹缓解层来修饰界面。