Abstract:
A shaped article can include a substrate formed from a glass material, a glass ceramic material, or a combination thereof and a cavity formed in the substrate. A sidewall of the cavity can have a random textured surface with a surface roughness of less than or equal to 300 nm. A method of machining a protrusion in a graphite block can include translating a cutting tool in a first longitudinal direction toward the graphite block to engage the graphite block with the cutting tool while rotating the cutting tool about a rotational axis without translating the cutting tool in a lateral direction, then translating the cutting tool in a second longitudinal direction away from the graphite block without translating the cutting tool in the lateral direction to disengage the cutting tool from the graphite block. A shaped article can be formed by pressing a preform with a monolithic graphite mold.
Abstract:
A glass sleeve assembly for a portable electronic device may comprise a glass sleeve extending longitudinally from a first opening defined by a first rim to a second opening defined by a second rim. The glass sleeve may have an internal surface. A first end cap may be positioned adjacent to the first opening and may have at least a portion extending longitudinally beyond the first rim. A second end cap may be positioned adjacent to the second opening and may have at least a portion extending longitudinally beyond the second rim. A frame may comprise first and second ends and a central portion between the first and second ends. The central portion may be located within the glass sleeve. The ends of the frame may be connected to the end caps. Shock absorbing interlayers may be mounted to the end caps and the glass sleeve.
Abstract:
Disclosed are apparatuses for shaping a glass structure, the apparatuses having a plurality of rib members, each rib member comprising at least one void and at least one shaping edge; and at least one support member. The apparatuses can further comprise a shaping member and/or a guide member and/or a shaping groove. Also disclosed herein are methods for shaping a glass structure, the methods comprising positioning the glass structure on a shaping apparatus and heating the glass structure to shape the glass structure.
Abstract:
A high load, high temperature compatible bearing assembly (200) includes a shaft (208) formed of refractory steel or high temperature alloy. A roller (204) formed of refractory steel or high temperature alloy receives the shaft (208) within a bore (220) in the roller (204). At least one bearing ring (212) formed of ceramic is disposed between the shaft (208) and the roller (204). The bearing ring (212) cooperates with the roller (204) to permit the roller (204) to freely rotate around the shaft (208).
Abstract:
A light guide plate suitable for use in a liquid crystal display device, the light guide plate comprising a glass plate and a light coupler bonded to a major surface of the light guide plate. Also disclosed is a backlight unit for a liquid crystal display device employing the light guide plate, and a display device employing the backlight unit.
Abstract:
A method includes contacting a second layer of a glass sheet with a forming surface to form a shaped glass article. The glass sheet includes a first layer adjacent to the second layer. The first layer includes a first glass composition. The second layer includes a second glass composition. An effective viscosity of the glass sheet during the contacting step is less than a viscosity of the second layer of the glass sheet during the contacting step. A shaped glass article includes a first layer including a first glass composition and a second layer including a second glass composition. A softening point of the first glass composition is less than a softening point of the second glass composition. An effective 108.2 P temperature of the glass article is at most about 90° C.
Abstract:
Disclosed is a laminated glass structure with one or more inner glass layers with at least one in tension and two outer glass layers in compression wherein one or both of the outer layers at least partially wrap around the one or more inner layers at one or more of the edges of the laminated glass structure. Also disclosed is a process for forming a laminated glass structure, comprising providing a laminated glass structure, removing at least some glass from at least one the edges of the structure to produce a concavity in at the at least one edge and applying heat to the at least one edge.
Abstract:
Methods and apparatus provide for modification of a work-piece at elevated temperatures. A carrier may be provided and operable to support the work-piece. A support mechanism may be provided that is movable via gross translation between a retracted position such that a distal end thereof is away from the carrier, and an extended position such that the distal end thereof is at least proximate to the carrier. A work-piece modification system may be coupled to, and disposed proximate to, the distal end of the support mechanism, and operating to facilitate modifying the work-piece at an elevated temperature. A precision tuning mechanism may couple the work-piece modification system to the support mechanism, and may operate to provide fine adjustments to an orientation, and a distance, of the work-piece modification system relative to the work-piece.
Abstract:
A glass tube making apparatus comprises a forming device with a shaping member positioned within a downstream portion of an outer tube. In further examples, methods of making a glass tube include the steps of passing a quantity molten glass through an upstream portion of the outer tube, wherein the molten glass includes a first cross-sectional shape. The method further includes the step of passing the quantity of molten glass through a downstream portion of the outer tube, wherein the first cross-sectional shape is transitioned to a second cross-sectional shape. In still further examples, methods of making a glass tube include the step of modifying a cross-sectional shape of the glass tube with an air bearing.
Abstract:
A backlight unit suitable for use in illuminating a liquid crystal display panel of a display device. The backlight unit comprises a light guide plate, the light guide plate comprising a glass substrate with at least one edge, an intermediate waveguide physically and optically coupled to the at least one edge along a length of the edge, and a light source optically coupled to the intermediate waveguide