Abstract:
A signal characterizer for performing functional transformations such as Fast Fourier Transforms (FFTs), which converts an input serial analog signal into a plurality of parallel discrete signals using an analog-type serial-to-parallel converter. The discrete signals are then supplied to the input terminals of butterfly operation circuits to process the parallel discrete signals into a plurality of transformed signals. A switch supplies the transformed signals to a serial signal output terminal. The switch is controlled by a controller so that the input signal sequence is converted to a serial signal sequence according to a predetermined order.
Abstract:
The present invention provides a matched filter which can refresh an entire while keeping the speed of a calculation comparable to a small sized circuit. The first and second addition circuits of a matched filter of the present invention are classified into a plurality of groups, the first and second auxiliary adders replace functions for the groups of the first and second adders respectively. The outputs of the first and second adders are then inputted to the first and second subtractors, respectively, and the refreshing means appropriately refreshes the groups replaced by the first and second auxiliary adders. Further, the present invention decreases the number of auxiliary sapling and holding circuits to be used, and decides the refreshing intervals by considering the change of the voltage caused by leakage and other permissible errors of output voltage.
Abstract:
An object of the present invention is to provide a matched filter circuit of small size and consuming low electric power. Paying attention that a spreading code is a 1 bit data string, an input signal is sampled and held as an analog signal along the time sequence, classified into "1" and "-1" and the classified signals are added in parallel by capacitive coupling in a matched filter circuit according to the present invention.
Abstract:
The present invention has an object to provide a filter circuit for communication generative an effective digital output as well as an analog output in a filter circuit of low electric power consumption. The function speed of an A/D converting circuit is minimized by intermittently holding an analog output signal according to an experience that peak detection can be performed by partially sampling the signal after the acquisition.
Abstract:
A matched filter bank including a plurality of matched filters and a sampling and holding units commonly used by the total matched filters. Therefore, the circuit size is diminished. An inverting amplifier for the matched filter with a variable gain includes an input capacitance, an inverting amplifier connected to an output of the input capacitance, and a plurality of feedback capacitances connected between an input and output of the inverting amplifier. A plurality of switches are connected to input side of the feedback capacitances for alternatively connecting the feedback capcitanec to the input of the inverting amplifier or a reference voltage. The feedback capacitances connected to the reference voltage are invalid with respect to a composite capacitance of the feedback capacitance and have no influence to the amplifier.
Abstract:
A matched filter and signal reception apparatus having a low power consumption and small circuitry size. In the matched filter, an analog input signal is converted to digital data by an analog to digital (A/D) converter, digital multiplication, as a correlation calculation, is executed by a plurality of exclusive-OR circuits, and an addition of outputs of the exclusive-OR circuits is performed. In the digital multiplication, the digital data is multiplied by a spreading code of one bit. The outputs from the exclusive-OR circuits are added for each weight of bits, and the addition output results are weighted and summed together.
Abstract:
A receiver for spread spectrum communication system receives a traffic channel and common control channel by a plurality of matched filters at least one of which is selectively available for the traffic or the common control channel. At the initial acquisition, a plurality of matched filters are used for receiving the common control channel. At the hand-over, a plurality of matched filters are used to receive traffic channels of the current base station and the base stations in the adjacent cells.
Abstract:
A filter circuit comprises a plurality of sampling and holding circuits for sampling and holding analog input signal with a predetermined sampling period, a calculation circuit for multiplying each the analog input signal by a predetermined multiplier, and for summing the multiplication results. The sampling and holding circuits are controlled in an electrical power such that the electrical power is decreased when holding.
Abstract:
A signal reception apparatus in the spread spectrum communication system requires only a small amount of circuitry and consumes a small amount of electric power. A quadrature detector decomposes received signals into in-phase components and quadrature components, and supplies them to a complex-type matched filter. The complex-type matched filter de-spreads the in-phase components and the quadrature components and sends them to a multi-path selector. The multi-path selector selects, from among the received de-spread signals, multiple paths having high levels of signal electric powers and sends the received signals of the selected paths to multiple phase correction blocks. Analog operation circuits calculate phase errors of the received signals of two successive pilot symbol blocks for each path. An analog operation circuit corrects the phases of the received signals of the information symbol block that has been received between the two successive pilot symbol blocks. A rake combiner synchronously combines the phase-corrected de-spread received signals of each path.
Abstract:
The present invention has an object to provide a spread spectrum communication system for heightening the speed of communication. The present invention transfers the first PN code sequence itself as the first component, adds and transfers zero or more instances of the second PN code sequence given a phase difference as the second component, and defines an information for transmitting by the number of the second PN codes corresponding to a cycle of said first PN code sequence.