Abstract:
A new method for forming polysilicon lines using a SiON anti-reflective coating during photolithography wherein a thin oxide protection layer is formed over the polysilicon sidewalls and active area surfaces after etching to prevent damage caused by removal of the SiON in the fabrication of integrated circuits is achieved. A gate oxide layer is provided on the surface of a silicon substrate. A polysilicon layer is deposited overlying the gate oxide layer. A SiON anti-reflective coating layer is deposited overlying the polysilicon layer. A photoresist mask is formed over the SiON anti-reflective coating layer. The SiON anti-reflective coating layer, polysilicon layer, and gate oxide layer are etched away where they are not covered by the photoresist mask to form polysilicon lines. The polysilicon lines and the silicon substrate are oxidized to form a protective oxide layer on the sidewalls of the polysilicon lines and on the surface of the silicon substrate. The SiON anti-reflective coating layer is removed wherein the protective oxide layer protects the polysilicon lines and the silicon substrate from damage to complete fabrication of polysilicon lines in the manufacture of an integrated circuit device.
Abstract:
A semiconductor structure includes an active region; a gate strip overlying the active region; and a metal-oxide-semiconductor (MOS) device. A portion of the gate strip forms a gate of the MOS device. A portion of the active region forms a source/drain region of the MOS device. The semiconductor structure further includes a stressor region over the MOS device; and a stressor-free region inside the stressor region and outside the region over the active region.
Abstract:
Stress engineering for PMOS and NMOS devices is obtained with a compressive stressor layer over the PMOS device, wherein the compressive stressor layer has the shape of a polygon when viewed from a top down perspective, and wherein the polygon includes a recess defined in its periphery. The NMOS device has a tensile stress layer wherein the tensile stressor layer has the shape of a polygon when viewed from the top down perspective, wherein the polygon includes a protrusion in its periphery, the protrusion extending into the recess of the first stressor layer. Thus, stress performance for both devices can be improved without violating design rules.
Abstract:
A method for forming masks for manufacturing a circuit includes providing a design of the circuit, wherein the circuit comprises a device; performing a first logic operation to determine a first region for forming a first feature of the device; and performing a second logic operation to expand the first feature to a second region greater than the first region. The pattern of the second region may be used to form the masks.
Abstract:
A method of forming an integrated circuit structure includes providing a silicon substrate, and implanting a p-type impurity into the silicon substrate to form a p-type region. After the step of implanting, performing an anneal to form a silicon oxide region, with a portion of the p-type region converted to the silicon oxide region.
Abstract:
A semiconductor structure includes an active region; a gate strip overlying the active region; and a metal-oxide-semiconductor (MOS) device. A portion of the gate strip forms a gate of the MOS device. A portion of the active region forms a source/drain region of the MOS device. The semiconductor structure further includes a stressor region over the MOS device; and a stressor-free region inside the stressor region and outside the region over the active region.
Abstract:
A method for forming masks for manufacturing a circuit includes providing a design of the circuit, wherein the circuit comprises a device; performing a first logic operation to determine a first region for forming a first feature of the device; and performing a second logic operation to expand the first feature to a second region greater than the first region. The pattern of the second region may be used to form the masks.
Abstract:
A method for forming both n and p wells in a semiconductor substrate using a single photolithography masking step, a non-conformal oxide layer and a chemical-mechanical polish step. A screen oxide layer is formed on a semiconductor substrate. A barrier layer is formed on the screen oxide layer. The barrier layer is patterned to form a first opening in the barrier layer over regions of the substrate where first wells will be formed. We implant impurities of a first conductivity type into the substrate to form first wells. In a key step, a non-conformal oxide layer is formed over the first well regions and the barrier layer. It is critical that the non-conformal oxide layer formed using a HDPCVD process. The non-conformal oxide layer is chemical-mechanical polished stopping at the barrier layer. The barrier layer is removed using a selective etch, to form second openings in the remaining non-conformal oxide layer over areas where second well will be formed in the substrate. Using the remaining non-conformal oxide as a mask, we implant impurities of the second conductivity type through the second openings to form second wells. The remaining non-conformal oxide layer and the screen oxide layer are removed.
Abstract:
A method to reduce to reduce DRAM capacitor STI junction leakage current. A Shallow Trench Isolation opening is formed, within this opening Field Oxide is deposited. The top surface of the FOX is etched down and a second layer of oxide is deposited over the FOX and the adjacent active regions. This second layer of oxide is etched bringing the top surface down to below the level of the top surface of the surrounding active areas but leaving spacers where the top surface of the FOX intersects with the active areas.