摘要:
Embodiments of the invention provide techniques for managing cache metadata providing a mapping between addresses on a storage medium (e.g., disk storage) and corresponding addresses on a cache device at which data items are stored. In some embodiments, cache metadata may be stored in a hierarchical data structure comprising a plurality of hierarchy levels. When a reboot of the computer is initiated, only a subset of the plurality of hierarchy levels may be loaded to memory, thereby expediting the process of restoring the cache metadata and thus startup operations. Startup may be further expedited by using cache metadata to perform operations associated with reboot.
摘要:
In accordance with one or more aspects, compressed storage management in a system includes determining which of multiple data units stored in an uncompressed portion of the storage resource are to be compressed and stored in a compressed portion of the storage resource. The management can further include returning one or more regions of the compressed portion for use in the uncompressed portion in response to storage resource pressure in the system, as well as compacting regions in the compressed portion to fill empty gaps in the compressed portion.
摘要:
Embodiments of the invention provide techniques for managing cache metadata providing a mapping between addresses on a storage medium (e.g., disk storage) and corresponding addresses on a cache device at data items are stored. In some embodiments, cache metadata may be stored in a hierarchical data structure comprising a plurality of hierarchy levels. Only a subset of the plurality of hierarchy levels may be loaded to memory, thereby reducing the memory “footprint” of cache metadata and expediting the process of restoring the cache metadata during startup operations. Startup may be further expedited by using cache metadata to perform operations associated with reboot. Thereafter, as requests to read data items on the storage medium are processed using cache metadata to identify addresses at which the data items are stored in cache, the identified addresses may be stored in memory. When the computer is later shut down, instead of having to transfer the entirety of the cache metadata from memory to storage, only the subset of the plurality of hierarchy levels and/or the identified addresses previously loaded to memory may be transferred (e.g., to the cache device), thereby expediting the shutdown of the computer.
摘要:
A method and apparatus for managing the caching of data on an auxiliary memory of a computer. Pages of data may be cached on an auxiliary memory, such as a flash memory, at a virtual level using an identifier that does not involve a physical address of the pages on a memory. Pages may be cached on auxiliary memory that may be removable from the computer, e.g., by unplugging the memory from the computer. Page data may be encrypted and/or compressed on the auxiliary memory. An authentication indicator may be used to verify the accuracy of cached data in the case of an interrupted connection to the auxiliary memory, e.g., as a result of computer power down, hibernation, removal of the memory from the computer, etc.
摘要:
Embodiments of the invention provide techniques for managing cache metadata providing a mapping between addresses on a storage medium (e.g., disk storage) and corresponding addresses on a cache device at data items are stored. In some embodiments, cache metadata may be stored in a hierarchical data structure comprising a plurality of hierarchy levels. When a reboot of the computer is initiated, only a subset of the plurality of hierarchy levels may be loaded to memory, thereby expediting the process of restoring the cache metadata and thus startup operations. Startup may be further expedited by using cache metadata to perform operations associated with reboot. Thereafter, as requests to read data items on the storage medium are processed using cache metadata to identify addresses at which the data items are stored in cache, the identified addresses may be stored in memory. When the computer is later shut down, instead of having to transfer the entirety of the cache metadata from memory to storage, only the subset of the plurality of hierarchy levels and/or the identified addresses previously loaded to memory may be transferred (e.g., to the cache device), thereby expediting the shutdown of the computer.
摘要:
Embodiments of the invention provide techniques for managing cache metadata providing a mapping between addresses on a storage medium (e.g., disk storage) and corresponding addresses on a cache device at data items are stored. In some embodiments, cache metadata may be stored in a hierarchical data structure comprising a plurality of hierarchy levels. When a reboot of the computer is initiated, only a subset of the plurality of hierarchy levels may be loaded to memory, thereby expediting the process of restoring the cache metadata and thus startup operations. Startup may be further expedited by using cache metadata to perform operations associated with reboot. Thereafter, as requests to read data items on the storage medium are processed using cache metadata to identify addresses at which the data items are stored in cache, the identified addresses may be stored in memory. When the computer is later shut down, instead of having to transfer the entirety of the cache metadata from memory to storage, only the subset of the plurality of hierarchy levels and/or the identified addresses previously loaded to memory may be transferred (e.g., to the cache device), thereby expediting the shutdown of the computer.
摘要:
Compressed storage management includes assigning a selection priority and a priority level to multiple data units stored in an uncompressed portion of a storage resource. The management can further include compressing data units and storing the compressed data units in a compressed portion of the storage resource. The data units in the compressed portion are stored in regions, which each store data units having the same selection priority or the same selection priority level.
摘要:
A proactive, resilient and self-tuning memory management system and method that result in actual and perceived performance improvements in memory management, by loading and maintaining data that is likely to be needed into memory, before the data is actually needed. The system includes mechanisms directed towards historical memory usage monitoring, memory usage analysis, refreshing memory with highly-valued (e.g., highly utilized) pages, I/O pre-fetching efficiency, and aggressive disk management. Based on the memory usage information, pages are prioritized with relative values, and mechanisms work to pre-fetch and/or maintain the more valuable pages in memory. Pages are pre-fetched and maintained in a prioritized standby page set that includes a number of subsets, by which more valuable pages remain in memory over less valuable pages. Valuable data that is paged out may be automatically brought back, in a resilient manner. Benefits include significantly reducing or even eliminating disk I/O due to memory page faults.
摘要:
A delay of starting up of certain applications may result in improving the overall performance of a system. The applications to be delayed may be placed in a container object or box such that they can be tracked and that other applications dependent on the delayed applications can be appropriately handled.
摘要:
A method and apparatus to decrease the boot time and the hibernate awaken time of a computer system is presented. Static and dynamic configuration data is stored in flash memory. The size of flash memory is selected so that the initialization time of the configuration data stored in the flash memory is approximately equal to the spin-up time of the disk drive where the operating system is stored. During power down or entry into a hibernate mode, the computer system determines the static and dynamic configuration data to be stored in flash memory based on a history of prior uses. Data is also stored in the flash memory during system operation to reduce the number of times the disk drive is spun up. When the computer system is powered up or awakened from hibernation, the configuration data in flash memory is initialized while the disk drive is spinning up.