Abstract:
An encapsulant film is made from a composition comprising (A) a non-polar ethylene-based polymer; (B) an organic peroxide; (C) a silane coupling agent; and (D) a co-agent comprising a compound of Structure I wherein R1-R6 each is independently selected from the group consisting of hydrogen, a C1-C8 hydrocarbyl group, a C1-C36 substituted hydrocarbyl group, and combinations thereof.
Abstract:
Semiconductive shield layers for power cable constructions are made from a composition that has: (A) A nonpolar, ethylene-based polymer having a density of greater than (>) 0.90 glee and a melt index of >20 g/10 min at 190° C./2.16 Kg; (B) A polar polymer consisting of ethylene and an unsaturated alkyl ester having 4 to 20 carbon atoms; (C) Acetylene carbon black; and (D) A curing agent; with the provisos that (1) the composition has a phase separated structure, and (2) the weight ratio of nonpolar polymer to polar polymer is from 0.25 to 4.
Abstract:
Processes for making cables and cable cores having a crosslinked insulation layer. The processes comprise (a) providing an initial cable core having a conductor, a first semiconductive layer, an initial insulation layer comprising a crosslinkable polymeric composition, and a second semiconductive layer, and (b) subjecting the initial cable core to a crosslinking process. The crosslinkable polymeric composition comprises an ethylene-based polymer, an organic peroxide, and a polyallyl crosslinking coagent. The polyallyl crosslinking coagent and the organic peroxide are present in amounts sufficient to provide an allyl-to-active oxygen molar ratio of less than 1.2.
Abstract:
A composition comprises a) an ethylene-based copolymer comprising units derived from ethylene and units derived from at least one comonomer of Structure I, wherein R is a C1-C2 hydrocarbyl group and R′ is a C1-C4 hydrocarbyl group; b) at least one antioxidant; c) from greater than 0 wt % to less than 3 wt % of an organic peroxide, based on the total weight of the composition; d) optionally, at least one co-agent; and e) optionally, at least one tree retardant, wherein the ethylene-based copolymer has a melt temperature (Tm) (° C.) and a comonomer content in moles per 100 grams ethylene-based copolymer (mol/100 g) (comonomer) that satisfies the relationship Tm
Abstract:
Semiconductive shield layers for power cable constructions are made from a composition comprising: (A) A nonpolar, ethylene-based polymer having a density of greater than (>) 0.90 g/cc and a melt index of >20 g/10 min at 190° C./2.16 Kg; (B) A polar polymer consisting of ethylene and an unsaturated alkyl ester having 4 to 20 carbon atoms; (C) Acetylene carbon black; and (D) A curing agent; with the provisos that (1) the composition has a phase separated structure, and (2) the weight ratio of nonpolar polymer to polar polymer is from 0.25 to 4.
Abstract:
Cross-linkable polymeric compositions comprising an ethylene-based polymer, an organic peroxide, an optional cross-linking coagent, and an antioxidant. Such cross-linkable polymeric compositions are prepared by imbibing at least a portion of the organic peroxide, the optional cross-linking coagent, and the antioxidant into the ethylene-based polymer. Such cross-linkable polymeric compositions can be employed in forming coated conductors.
Abstract:
The present disclosure provides a composition comprising or obtained from a reaction mixture comprising a first propylene-based polymer, an olefin block copolymer, and a cure component. The cure component comprises (i) a second propylene/α-olefin copolymer, (ii) a scorch retardant, and (iii) a crosslinking agent.
Abstract:
Cross-linkable polymeric compositions comprising an ethylene-based polymer, an organic peroxide, and a polyallyl cross-linking coagent, where the polyallyl cross-linking coagent and the organic peroxide are present in amounts sufficient to provide an allyl-to-active oxygen molar ratio of at least 1.6, based on the allyl content of the polyallyl cross-linking coagent and the active oxygen content of the organic peroxide. Such cross-linkable polymeric compositions can be employed in forming coated conductors.
Abstract:
A process to form a crosslinked composition, the process comprising thermally treating a composition that comprises the following components: a) at least one olefin/silane interpolymer comprising at least one Si—H group, b) at least one peroxide, and c) at least one crosslinking coagent, wherein the composition has a mole ratio of active oxygen atom to carbon-carbon double bond of ≥0.02 and ≤0.7, based on the active oxygen atom content of component b and the carbon-carbon double bond content of component c. A composition that comprises the following components: a) at least one olefin/silane interpolymer comprising at least one Si—H group, b) at least one peroxide, and c) at least one crosslinking coagent, wherein the composition has a mole ratio of active oxygen atom to carbon-carbon double bond of ≥0.02 and ≤0.7, based on the active oxygen atom content of component b and the carbon-carbon double bond content of component c.
Abstract:
A process to form a crosslinked, foamed composition, and related processes and compositions, the process comprising thermally treating a first composition that comprises the following components: a) at least one olefin/silane interpolymer comprising at least one Si—H group, b) at least one peroxide, and c) at least one blowing agent.