Abstract:
An analog baud rate clock and data recovery apparatus includes a first track and hold circuit that delays a received signal by one unit interval to create an odd signal; a second track and hold circuit that delays the received signal by one unit interval to create an even signal; a first comparator circuit; and a second comparator circuit. The first track and hold circuit outputs the odd signal to the first comparator circuit and the second comparator circuit. The second track and hold circuit outputs the even signal to the first comparator circuit and the second comparator circuit. The first comparator adds the odd signal to the even signal and outputs a first potential timing error. The second comparator subtracts the odd signal and the even signal and outputs a second potential timing error signal. A desired timing error signal is derived from the first and second potential timing error signals. The desired timing error signal is used to determine whether signal sampling is early or late.
Abstract:
A data communications system and methods are disclosed. The system includes a transmitter for conveying a data signal filtered by a finite impulse response (FIR) filter to a receiver via a channel. The receiver equalizes the received data signal using a decision feedback equalizer (DFE) and the FIR. The receiver samples the data signal to determine an error signal and uses the error signal to adapt settings of a pre-cursor tap coefficient of the FIR, one or more post-cursor tap coefficients of the FIR, a phase of the recovered clock, and a coefficient of the DFE. To adapt the settings, the receiver determines the error signal based on an error sample taken from the data signal in a single clock cycle. To determine an error signal, the receiver samples the data signal at a phase estimated to correspond to a peak amplitude of a pulse response of the channel.
Abstract:
A system and methods for recovering data from an input data signal are disclosed. The system includes a transmitter for conveying a data signal filtered by a finite impulse response (FIR) filter to a receiver via a channel. The receiver uses an adaptive algorithm to determine update signals for a pre-cursor tap coefficient of the FIR based on samples taken from the received data signal and conveys the update signals to the FIR. To generate update signals, the receiver samples the data signal at a phase estimated to correspond to a peak amplitude of a pulse response of the channel. The phase is based on a clock recovered from the data signal. The update signals increase or decrease a pre-cursor tap coefficient setting in response to determining that the phase corresponds to a point earlier or later, respectively, than the peak amplitude of the channel's pulse response.
Abstract:
An asymmetric DFE receiver circuit is disclosed. The receiver circuit includes a voltage measuring unit configured to determine a signal voltage of a received signal, and a comparator unit configured to calculate a difference between the signal voltage and an evaluation threshold voltage and to compare the difference to the value of a midpoint voltage. The comparator unit is configured to generate a first control signal if the difference is greater than the midpoint voltage value or a second control signal if the signal voltage is less than the midpoint voltage value. The receiver includes an adjustment circuit configured to adjust the evaluation threshold voltage toward the signal voltage if the first control signal is generated and away from the signal voltage if the second control signal is generated. The rates of adjustment may vary depending upon whether the received signal is a transition bit or a non-transition bit.
Abstract:
A mechanism is provided for constructing an oversampled waveform for a set of incoming signals received by a receiver. In one implementation, the oversampled waveform is constructed by way of cooperation between the receiver and a waveform construction mechanism (WCM). The receiver receives the incoming signals, samples a subset of the incoming signals at a time, stores the subsets of sample values into a set of registers, and subsequently provides the subsets of sample values to the WCM. The WCM in turn sorts through the subsets of sample values, organizes them into proper orders, and “stitches” them together to construct the oversampled waveform for the set of incoming signals. With proper cooperation between the receiver and the WCM, and with proper processing logic on the WCM, it is possible to construct the oversampled waveform for the incoming signals without requiring large amounts of resources on the receiver.
Abstract:
Improved clock and data recovery involves transmitting one or more null frames prior to transmitting a sync frame. A receiving component detects for the sync frame to lock to a data signal sent on a signal path by a transmitting component. The one or more null frames transmitted prior to the sync frame results in a settling of the signal path prior to reception of the sync frame, thereby lessening or removing the effects of previously sent data on the sync frame.
Abstract:
A receiver circuit is described. In the receiver circuit, an analog-to-digital converter (ADC) generates first samples of a data signal based on a first clock signal, and a clock-data-recovery (CDR) error-detection circuit generates second samples of the data signal based on a second clock signal. In addition, the CDR error-detection circuit estimates intersymbol interference (ISI) at a current sample in the second samples from an adjacent, subsequent sample in the second samples. Based on the second samples and the estimated ISI, a CDR circuit generates the first clock signal and the second clock signal, which involves modifying the skews of either or both of these clock signals so that the current sample is associated with a zero crossing of a pulse response of a communication channel from which the data signal was received, thereby reducing or eliminating the ISI from the adjacent, subsequent sample.
Abstract:
The present invention relates to a decorative collar stay comprising a main body of collar stay; a mounting member is arranged on said main body of collar stay, and a decorative member is arranged on said mounting member. By disposing a decorative member and a mounting member on the main body of a collar stay, when the decorative collar stay is used, the main body of the collar stay can not only be inserted into the collar for support, but also can bring beautiful effect by putting out the decorative member from the collar to locate at the neckline. Further, the decorative member is connected to the main body of the collar stay through mounting member, so the brace for the collar will be enhanced.