Abstract:
Audio watermark encoding methods employ reversing polarity and pairwise embedding. A watermark signal is generated, mapped to pairs of embedding locations and inserted in the members of the pair with reverse polarity. The pairs of embedding locations correspond to adjacent regions or frames in time or frequency domains. A method for controlling an audio output device captures audio from the device, extracts its identity from a watermark, and modifies the operation of the device, e.g. varying watermark strength or audio loudness.
Abstract:
An audio playback system receives digitally watermarked audio programming and distributes it to audio speakers in a venue, enabling a variety of location and product dependent services to be delivered to mobile devices in the venue. Mobile devices sense audio from speakers and decode digital identifying information, including characteristics to distinguish audio sources. The mobile device communicates with a networked computer to provide the identifying information, which in turn, triggers an alert for output on the mobile device.
Abstract:
A method for indoor navigation in a venue derives positioning of a mobile device based on sounds captured by the microphone of the mobile device from the ambient environment. It is particularly suited to operate on smartphones, where the sounds are captured using microphone that captures sounds in a frequency range of human hearing. The method determines a position of the mobile device in the venue based on identification of the audio signal, monitors the position of the mobile device, and generates a position based alert on an output device of the mobile device when the position of the mobile device is within a pre-determined position associated with the position based alert.
Abstract:
Audio sounds are captured from a subject's body, e.g., using a smartphone or a worn array of microphones. Plural features are derived from the captured audio, and serve as fingerprint information. One such feature may be a time interval over which a threshold part of spectral energy in the audio is expressed. Another may be a frequency bandwidth within which a second threshold part of the spectral energy is expressed. Such fingerprint information is provided to a knowledge base that contains reference fingerprint data and associated metadata. The knowledge base matches the fingerprint with reference fingerprint data, and provides associated metadata in return—which can comprise diagnostic information related to the captured sounds. In some arrangements, an audio signal or pressure waveform stimulates the body at one location, and is sensed at another, to discern information about the intervening transmission medium. A great variety of other features and arrangements are also detailed.
Abstract:
Computer-aided dermatological analysis requires accurate color data. Color accuracy can be improved by compensating captured imagery based on reference color data. In one particular arrangement, reference color data is acquired from blood. In another arrangement, imagery captured from a banknote is used as reference data. A great variety of other features and arrangements are also detailed.
Abstract:
The availability of high quality imagers on smartphones and other portable devices facilitates creation of a large, crowd-sourced, image reference library that depicts skin rashes and other dermatological conditions. Some of the images are uploaded with, or later annotated with, associated diagnoses or other information (e.g., “this rash went away when I stopped drinking milk”). A user uploads a new image of an unknown skin condition to the library. Image analysis techniques are employed to identify salient similarities between features of the uploaded image, and features of images in this reference library. Given the large dataset, statistically relevant correlations emerge that identify to the user certain diagnoses that may be considered, other diagnoses that may likely be ruled-out, and/or anecdotal information about similar skin conditions from other users. Similar arrangements can employ audio and/or other physiologically-derived signals. A great variety of other features and arrangements are also detailed.
Abstract:
A method for indoor navigation in a venue derives positioning of a mobile device based on sounds captured by the microphone of the mobile device from the ambient environment. It is particularly suited to operate on smartphones, where the sounds are captured using microphone that captures sounds in a frequency range of human hearing. The method determines a position of the mobile device in the venue based on identification of the audio signal, monitors the position of the mobile device, and generates a position based alert on an output device of the mobile device when the position of the mobile device is within a pre-determined position associated with the position based alert.
Abstract:
Audio signal processing enhances audio watermark embedding and detecting processes. Audio signal processes include audio classification and adapting watermark embedding and detecting based on classification. Advances in audio watermark design include adaptive watermark signal structure data protocols, perceptual models, and insertion methods. Perceptual and robustness evaluation is integrated into audio watermark embedding to optimize audio quality relative the original signal, and to optimize robustness or data capacity. These methods are applied to audio segments in audio embedder and detector configurations to support real time operation. Feature extraction and matching are also used to adapt audio watermark embedding and detecting.