摘要:
A manufacturing method of a thin film transistor (TFT) includes forming a gate electrode including a metal that can be combined with silicon to form silicide on a substrate and forming a gate insulation layer by supplying a gas which includes silicon to the gate electrode at a temperature below about 280° C. The method further includes forming a semiconductor on the gate insulation layer, forming a data line and a drain electrode on the semiconductor and forming a pixel electrode connected to the drain electrode.
摘要:
A manufacturing method of a thin film transistor (TFT) includes forming a gate electrode including a metal that can be combined with silicon to form silicide on a substrate and forming a gate insulation layer by supplying a gas which includes silicon to the gate electrode at a temperature below about 280° C. The method further includes forming a semiconductor on the gate insulation layer, forming a data line and a drain electrode on the semiconductor and forming a pixel electrode connected to the drain electrode.
摘要:
A gate line includes a first seed layer formed on a base substrate and a first metal layer formed on the first seed layer. A first insulation layer is formed on the base substrate. A second insulation layer is formed on the base substrate. Here, a line trench is formed through the second insulation layer in a direction crossing the gate line. A data line includes a second seed layer formed below the line trench and a second metal layer formed in the line trench. A pixel electrode is formed in a pixel area of the base substrate. Therefore, a trench of a predetermined depth is formed using an insulation layer and a metal layer is formed through a plating method, so that a metal line having a sufficient thickness may be formed.
摘要:
A gate line includes a first seed layer formed on a base substrate and a first metal layer formed on the first seed layer. A first insulation layer is formed on the base substrate. A second insulation layer is formed on the base substrate. Here, a line trench is formed through the second insulation layer in a direction crossing the gate line. A data line includes a second seed layer formed below the line trench and a second metal layer formed in the line trench. A pixel electrode is formed in a pixel area of the base substrate. Therefore, a trench of a predetermined depth is formed using an insulation layer and a metal layer is formed through a plating method, so that a metal line having a sufficient thickness may be formed.
摘要:
A display substrate includes a base substrate, a first metal pattern, a gate insulating layer, a second metal pattern, a channel layer and a pixel electrode. The first metal pattern is formed on the base substrate, and includes a gate line and a gate electrode of a switching element. The gate insulating layer is formed on the base substrate including the first metal pattern. The second metal pattern is formed on the gate insulating layer, and includes a source electrode, a drain electrode and a source line. The channel layer is formed under the second metal pattern, and is patterned to have substantially the same side surface as a side surface of the second metal pattern. The pixel electrode is electrically connected to the drain electrode. Therefore, an afterimage on a display panel, thus improving display quality.
摘要:
A gate line includes a first seed layer formed on a base substrate and a first metal layer formed on the first seed layer. A first insulation layer is formed on the base substrate. A second insulation layer is formed on the base substrate. Here, a line trench is formed through the second insulation layer in a direction crossing the gate line. A data line includes a second seed layer formed below the line trench and a second metal layer formed in the line trench. A pixel electrode is formed in a pixel area of the base substrate. Therefore, a trench of a predetermined depth is formed using an insulation layer and a metal layer is formed through a plating method, so that a metal line having a sufficient thickness may be formed.
摘要:
A gate line includes a first seed layer formed on a base substrate and a first metal layer formed on the first seed layer. A first insulation layer is formed on the base substrate. A second insulation layer is formed on the base substrate. Here, a line trench is formed through the second insulation layer in a direction crossing the gate line. A data line includes a second seed layer formed below the line trench and a second metal layer formed in the line trench. A pixel electrode is formed in a pixel area of the base substrate. Therefore, a trench of a predetermined depth is formed using an insulation layer and a metal layer is formed through a plating method, so that a metal line having a sufficient thickness may be formed.
摘要:
With a metal pattern formation process and a method of manufacturing a thin film transistor array panel using the metal pattern formation process, an organometallic layer is formed by coating an organometallic complex containing metal. The organometallic layer is exposed to light through a photo mask, and developed to form a metal pattern.
摘要:
In one embodiment, a thin film transistor array display panel and method of manufacturing the same are provided. A method includes forming a gate line on a substrate; forming a gate insulating layer, a semiconductor layer, and an ohmic contact layer on the gate line; forming a data layer on the ohmic contact layer; forming a photosensitive pattern on the data layer; etching the data layer to form a data line including a source electrode and a drain electrode that is opposite to the source electrode; reflowing the photosensitive pattern to cover side surfaces of the source electrode and the drain electrode; and etching the ohmic contact layer using the reflowed photosensitive pattern as a mask.
摘要:
A thin film transistor array panel is provided, which includes a plurality of gate lines, a plurality of common electrodes, a gate insulating layer covering the gate lines and the common electrodes, a plurality of semiconductor layers formed on the gate insulating layer, a plurality of data lines including a plurality of source electrodes and formed on the semiconductor layer, a plurality of drain electrodes formed on the semiconductor layer, and a plurality of pixel electrodes overlapping the common electrodes and connected to the drain electrodes. Because the common electrodes are made of ITON, IZON, or a-ITON, or a double layer of ITO/ITON, IZO/IZON, or a-a-ITO/a-ITON, when H2 or SiH4 are injected to form a silicon nitride (SiNX) layer on the common electrodes, the opaque metal Sn or Zn is not produced on the surfaces of the common electrode.