Abstract:
A method and system for converting protocols of messages receive a first wireless message onboard a first vehicle in a vehicle consist that includes the first vehicle and one or more additional vehicles. The method and system also determine a first protocol of the first wireless message, determine a different, second protocol used by a control system disposed onboard the first vehicle, change the first wireless message to a different, second message by modifying the first protocol of the first wireless message to the different, second protocol, and communicate the second message to the control system.
Abstract:
A communication system and method receive, at an energy management system disposed onboard a vehicle system formed from a lead vehicle and one or more remote vehicles, trip data that represents one or more characteristics of an upcoming trip of the vehicle system along a route. A selected portion of the trip data is communicated from the energy management system to a distributed power system also disposed onboard the vehicle system. The selected portion includes identifying information and one or more orientations of the one or more remote vehicles. Using the distributed power system, communication links between the lead vehicle and the one or more remote vehicles are established using the identifying information and the one or more orientations.
Abstract:
A system and method for controlling a vehicle system control movement of the vehicle system along a route. The vehicle system includes one or more propulsion-generating vehicles. A propulsion-generating helper vehicle is temporarily added to the vehicle system such that the helper vehicle increases one or more of an amount of tractive force or an amount of braking effort generated by the vehicle system. The helper vehicle may be added during movement of the vehicle system. The system and method may add the helper vehicle without de-linking the propulsion-generating vehicles in the vehicle system from each other. The system and method optionally may control movement of the propulsion-generating vehicles and the helper vehicle according to a trip plan that designates operational settings as a function of at least one of time or distance along the route.
Abstract:
A communication system for a vehicle includes a transceiver assembly, a selection module, and a monitoring module. The transceiver assembly selectively communicates a data signal over a plurality of communication channels. The data signal is related to distributed power operations of the vehicle. The selection module is communicatively coupled with the transceiver assembly and switches the transceiver assembly to any of the communication channels. The monitoring module is communicatively coupled with the selection module and determines a load parameter of one or more of the communication channels. The load parameter is based on a population value of the one or more communication channels. The selection module switches the transceiver assembly to a selected channel of the communication channels based on the load parameter for communicating the data signal over the selected channel.
Abstract:
A sensing system includes a leading sensor, a trailing sensor, and a route examining unit. The leading sensor is onboard a first vehicle of a vehicle system that is traveling along a route. The leading sensor measures first characteristics of the route as the vehicle system moves along the route. The trailing sensor is disposed onboard a second vehicle of the vehicle system. The trailing sensor measures second characteristics of the route as the vehicle system moves along the route. The route examining unit is disposed onboard the vehicle system and receives the first characteristics of the route and the second characteristics of the route to compare the first characteristics with the second characteristics. The route examining unit also identifies a segment of the route as being damaged based on a comparison of the first characteristics with the second characteristics.