Abstract:
Additive manufacturing methods include iteratively fusing together a plurality of layers of additive material to build a turbine component comprising an intermediate portion that extends from a first surface to a second surface, wherein a cross section of at least portion of the intermediate portion of the turbine component comprises a plurality of walls disposed in a cellular configuration.
Abstract:
A hybrid braze tapes includes a braze tape layer comprising a braze alloy composition and a binder, and, a polytetrafluoroethylene (“PTFE”) tape layer disposed adjacent a surface of the braze tape layer.
Abstract:
Methods of providing a fiber reinforced braze include providing a substrate, disposing at least a first fiber reinforcement layer on the substrate, wherein the at least first fiber reinforcement layer comprises a fiber material, disposing at least a first braze layer on the at least first fiber reinforcement layer, wherein a melt temperature of the braze layer is lower than a melt temperature of the fiber material, and heating the at least first fiber reinforcement layer and the at least first braze layer to bond the fiber reinforced braze to the substrate.
Abstract:
A method of forming an article can comprise heating a metal to form a molten metal having a metal temperature; heating a mold to a mold temperature greater than or equal to the metal temperature; introducing the molten metal to the mold; cooling a first portion of the molten metal while maintaining a second portion of the molten metal at the metal temperature, wherein the first portion has a first side and a second side, wherein the second side is opposite the first side and adjacent to the second portion, and wherein the cooling comprises progressively cooling the first portion from the first side to the second side such that a solidification interface progresses from the first side to the second side; and cooling the remainder of the molten metal from multiple directions after the first portion is cooled to less than or equal to a crystallization temperature.
Abstract:
A brazing process and plate assembly are disclosed. The brazing process includes positioning a braze foil on a first workpiece, then securing the braze foil to the first workpiece to form a brazable component, then positioning a second workpiece proximal to the brazable component, and then brazing the second workpiece to the brazable component. Additionally or alternatively, the brazing process includes positioning the braze foil on a tube, then securing the braze foil to the tube to form a brazable tube, then positioning a plate of a plate assembly proximal to the brazable tube, and then brazing the plate to the brazable tube. The plate assembly includes a plate and a tube brazed to the plate by a braze foil secured to the tube.
Abstract:
A process of modifying a passage in a component is provided. The process includes inserting a first material into the passage; blocking at least one end of the passage; inserting an elongated member into the passage through the first material; heat treating the passage, the first material, and the elongated member to form a solid interior in component; and machining through the solid interior to form a modified passage in the component.
Abstract:
A system includes a gas turbine component having a recessed portion with a recessed surface in a hard-to-weld (HTW) material. The system includes a plate disposed over the recessed portion. The plate has an easy-to-weld (ETW) material. The plate has an outer surface and an inner surface, and the inner surface faces the recessed portion. The system includes a braze material disposed within the recessed portion between the recessed surface and the inner surface of the plate. The braze material is configured to bond the recessed surface of the recessed portion with the inner surface of the plate when the braze material is heated to a brazing temperature. The system includes a filler material disposed on the outer surface of the plate disposed over the recessed portion. Application of the filler material to the outer surface of the plate is configured to heat the braze material to the brazing temperature.
Abstract:
A closure element for an internal passage in a component, and a related method and turbine blade or nozzle are disclosed. The closure element includes a spherical body made of a first superalloy, and a plurality of extensions extending from a surface of the spherical body. The plurality of extensions made of the same, similar or different material other than the first superalloy. Subjecting the component to at least one thermal cycle causes a braze material to form a metallurgical bond with the spherical body, the plurality of extensions and the passage wall to seal the internal passage.
Abstract:
A method of protecting a hole in a component during a coating process is disclosed. The method includes: placing a plug in the hole, the plug including a water insoluble core and a water soluble layer surrounding at least a portion of an outer surface of the metal core. A coating is applied over the plug and at least a portion of the component. The component is immersed in water to dissolve the water soluble layer, allowing removal of the water insoluble core. Removal of the coating from over the hole and the water insoluble core from within the hole may follow.
Abstract:
A multi-piece part includes multiple pieces fabricated via different types of fabrication processes, wherein the multiple parts are configured to be coupled to one another to form the assembly. At least one of the multiple parts is fabricated via an additive manufacturing method. The multi-piece part also includes a holder assembly that couples and holds together the multiple pieces of the multi-piece part, wherein the holder assembly comprises a reversible, mechanical-type coupling.