Abstract:
Methods and interconnect structures for circuit structure transistors are provided. The methods include, for instance: providing one or more fins above a substrate, and an insulating material over the fin(s) and the substrate; providing barrier structures extending into the insulating material, the barrier structures being disposed along opposing sides of the fin(s); exposing a portion of the fin(s) and the barrier structures; and forming an interconnect structure extending over the fin(s), the barrier structures confining the interconnect structure to a defined dimension transverse to the fin(s). Exposing the portion of the fin(s) and barrier structures may include isotropically etching the insulating material with an etchant that selectively etches the insulating material without affecting a barrier material of the barrier structures.
Abstract:
One illustrative method disclosed herein includes, among other things, forming first and second recessed gate structures, recessing the second recessed gate structure so as to define a further recessed second gate structure that exposes a channel structure within a gate cavity, forming first and second gate cap layers in first and second replacement gate cavities, respectively, forming a recess in the second gate cap layer that exposes the channel structure, forming a semiconductor material on the exposed portion of the channel structure within the recess in the second gate cap layer so as to define a first source/drain region for the vertical FinFET device, and forming various contact structures to the gates of the devices and the first source/drain region.
Abstract:
One illustrative method disclosed herein includes removing the sidewall spacers and a gate cap layer so as to thereby expose an upper surface and sidewalls of a sacrificial gate structure, forming an etch stop layer above source/drain regions of a device and on the sidewalls and upper surface of the sacrificial gate structure, forming a first layer of insulating material above the etch stop layer, removing the sacrificial gate structure so as to define a replacement gate cavity that is laterally defined by portions of the etch stop layer, forming a replacement gate structure in the replacement gate cavity, and forming a second gate cap layer above the replacement gate structure.
Abstract:
One illustrative method disclosed herein includes forming a plurality of initial fins in a substrate, wherein at least one of the initial fins is a to-be-removed fin, forming a material adjacent the initial fins, forming a fin removal masking layer above the plurality of initial fins, removing a desired portion of the at least one to-be-removed fin by: (a) performing a recess etching process on the material to remove a portion, but not all, of the material positioned adjacent the sidewalls of the at least one to-be-removed fin, (b) after performing the recess etching process, performing a fin recess etching process to remove a portion, but not all, of the at least one to be removed fin and (c) repeating steps (a) and (b) until the desired amount of the at least one to-be-removed fin is removed.
Abstract:
One illustrative method disclosed herein includes forming a plurality of initial fins in a substrate, wherein at least one of the initial fins is a to-be-removed fin, forming a material adjacent the initial fins, forming a fin removal masking layer above the plurality of initial fins, removing a desired portion of the at least one to-be-removed fin by: (a) performing a recess etching process on the material to remove a portion, but not all, of the material positioned adjacent the sidewalls of the at least one to-be-removed fin, (b) after performing the recess etching process, performing a fin recess etching process to remove a portion, but not all, of the at least one to be removed fin and (c) repeating steps (a) and (b) until the desired amount of the at least one to-be-removed fin is removed.
Abstract:
A precision resistor is formed with a controllable resistance to compensate for variations that occur with temperature. An embodiment includes forming a resistive semiconductive element having a width and a length on a substrate, patterning an electrically conductive line across the width of the resistive semiconductive element, but electrically isolated therefrom, and forming a depletion channel in the resistive semiconductive element under the electrically conductive line to control the resistance value of the resistive semiconductive element. The design enables dynamic adjustment of the resistance, thereby improving the reliability of the resistor or allowing for resistance modification during final packaging.