Abstract:
A method of forming a self-aligned MTJ without using a photolithography mask and the resulting device are provided. Embodiments include forming a first electrode over a metal layer, the metal layer recessed in a low-k dielectric layer; forming a MTJ layer over the first electrode; forming a second electrode over the MTJ layer; removing portions of the second electrode, the MTJ layer, and the first electrode down to the low-k dielectric layer; forming a silicon nitride-based layer over the second electrode and the low-k dielectric layer; and planarizing the silicon nitride-based layer down to the second electrode.
Abstract:
One example disclosed herein involves forming source/drain conductive contacts to first and second source/drain regions, the first source/drain region being positioned between a first pair of transistor devices having a first gate pitch dimension, the second source/drain region being positioned between a second pair of transistor devices having a second gate pitch dimension that is greater than the first gate pitch dimension, wherein the first and second pairs of transistor devices have a gate structure and sidewall spacers positioned adjacent the gate structure.
Abstract:
A FinFET includes a semiconductor fin supporting a first transistor and a second transistor. A first transistor gate electrode extends over a first channel region of the fin and a second transistor gate electrode extends over a second channel region of the fin. Epitaxial growth material on a top of the fin forms a raised source region on a first side of the first transistor gate electrode, an intermediate region between a second side of the first transistor gate electrode and a first side of the second transistor gate electrode, and a raised drain region on a second side of the second transistor gate electrode. The first and second transistor gate electrodes are short circuit connected to each other, with the first transistor configured to have a first threshold voltage and the second transistor configured to have a second threshold voltage different from the first threshold voltage.
Abstract:
One method includes performing an etching process through a patterned mask layer to form trenches in a substrate that defines first and second fins, forming liner material adjacent the first fin to a first thickness, forming liner material adjacent the second fin to a second thickness different from the first thickness, forming insulating material in the trenches adjacent the liner materials and above the mask layer, performing a process operation to remove portions of the layer of insulating material and to expose portions of the liner materials, performing another etching process to remove portions of the liner materials and the mask layer to expose the first fin to a first height and the second fin to a second height different from the first height, performing another etching process to define a reduced-thickness layer of insulating material, and forming a gate structure around a portion of the first and second fin.
Abstract:
A fin field effect transistor integrated circuit (FinFET IC) has a plurality of fins extending from a semiconductor substrate, where a trough is defined between adjacent fins. A second dielectric is positioned within the trough, and a protruding portion of the fins extends above the second dielectric. A first dielectric is positioned between the fin sidewalls and the second dielectric.
Abstract:
Embodiments of the present invention provide a method of forming semiconductor structure. The method includes forming a set of device features on top of a substrate; forming a first dielectric layer directly on top of the set of device features and on top of the substrate, thereby creating a height profile of the first dielectric layer measured from a top surface of the substrate, the height profile being associated with a pattern of an insulating structure that fully surrounds the set of device features; and forming a second dielectric layer in areas that are defined by the pattern to create the insulating structure. A structure formed by the method is also disclosed.
Abstract:
Disclosed herein are various methods of forming spacers on FinFETs and other semiconductor devices. In one example, the method includes forming a plurality of spaced-apart trenches in a semiconducting substrate that defines a fin, forming a first layer of insulating material in the trenches that covers a lower portion of the fin but exposes an upper portion of the fin, and forming a second layer of insulating material on the exposed upper portion of the fin. The method further comprises selectively forming a dielectric material above an upper surface of the fin and in a bottom of the trench, depositing a layer of spacer material above a gate structure of the device and above the dielectric material above the fin and in the trench, and performing an etching process on the layer of spacer material to define sidewall spacers positioned adjacent the gate structure.
Abstract:
One method disclosed herein includes forming first and second gate cap protection layers that encapsulate and protect a gate cap layer. A novel transistor device disclosed herein includes a gate structure positioned above a semiconductor substrate, a spacer structure positioned adjacent the gate structure, a layer of insulating material positioned above the substrate and around the spacer structure, a gate cap layer positioned above the gate structure and the spacer structure, and a gate cap protection material that encapsulates the gate cap layer, wherein portions of the gate cap protection material are positioned between the gate cap layer and the gate structure, the spacer structure and the layer of insulating material.
Abstract:
One method disclosed herein includes forming first and second gate cap protection layers that encapsulate and protect a gate cap layer. A novel transistor device disclosed herein includes a gate structure positioned above a semiconductor substrate, a spacer structure positioned adjacent the gate structure, a layer of insulating material positioned above the substrate and around the spacer structure, a gate cap layer positioned above the gate structure and the spacer structure, and a gate cap protection material that encapsulates the gate cap layer, wherein portions of the gate cap protection material are positioned between the gate cap layer and the gate structure, the spacer structure and the layer of insulating material.
Abstract:
FinFET semiconductor devices with local isolation features and methods for fabricating such devices are provided. In one embodiment, a method for fabricating a semiconductor device includes providing a semiconductor substrate comprising a plurality of fin structures formed thereon, wherein each of the plurality of fin structures has sidewalls, forming spacers about the sidewalls of the plurality of fin structures, and forming a silicon-containing layer over the semiconductor substrate and in between the plurality of fin structures. The method further includes removing at least a first portion of the silicon-containing layer to form a plurality of void regions while leaving at least a second portion thereof in place and depositing an isolation material in the plurality of void regions.