Abstract:
An ultrasonic detection method and system are disclosed. The ultrasonic detection method includes providing an ultrasonic detection system having a first ultrasonic device arrangement and a second ultrasonic device arrangement, positioning the ultrasonic detection system in a peripheral offset position with respect to an object to be measured, and transmitting and receiving an ultrasonic beam between the first ultrasonic device arrangement and the second ultrasonic device arrangement, thereby obtaining ultrasonic detection information about the object. Additionally or alternatively, the transmitting and receiving of the ultrasonic detection method obtains data on a volume greater than that which is capable of being analyzed by a single probe arrangement. The ultrasonic detection system includes the first ultrasonic device arrangement and the second ultrasonic device arrangement positioned in a peripheral offset position with respect to an object to be measured.
Abstract:
A valve body in a passage of a housing connected to a through hole in a sealed machine casing can allow an inspection apparatus into an interior of the casing when open, and prevents fluid flow through the passage when closed. Seals can engage the inspection apparatus to prevent fluid flow through the passage during inspection or inspection apparatus movement. A guide conduit in the casing can include branches and can guide the inspection apparatus to multiple inspection sites. Guide marks can identify the branches to assist with navigation within the casing.
Abstract:
This disclosure provides systems and methods for an actuated sensor module for in situ gap inspection robots. A mounting interface attaches to the sensor module to the robot system. A least one arm is operatively connected to the mounting interface and has a joint. A sensor head is operatively connected to the arm at the joint and an actuator operatively connected to the arm moves the sensor head around the second joint.
Abstract:
Systems for monitoring a component in a turbomachine can include a strain sensor comprising at least two reference points disposed on a surface of the component, and a data acquisition device connected to the turbomachine comprising a field of view, wherein the field of view is positioned to at least periodically capture the strain sensor on the component.
Abstract:
This disclosure provides systems and components for an omnidirectional traction module for use in a robot, such as a crawler robot used in in situ gap inspection in a machine, such as a generator, an electric motor, or a turbomachine. The traction module may include an outer frame and a rotating frame rotatably mounted within the outer frame. At least one drive system may be mounted within the rotating frame. The at least one dive system may have a fixed orientation within the rotating frame. An actuator may be operatively connected to the rotating frame to controllably rotate the rotating frame to a desired orientation for robot travel.
Abstract:
A valve body in a passage of a housing connected to a through hole in a sealed machine casing can allow an inspection apparatus into an interior of the casing when open, and prevents fluid flow through the passage when closed. Seals can engage the inspection apparatus to prevent fluid flow through the passage during inspection or inspection apparatus movement. A guide conduit in the casing can include branches and can guide the inspection apparatus to multiple inspection sites. Guide marks can identify the branches to assist with navigation within the casing.
Abstract:
A system and related methods for evaluating a component using a reference feature and a replicate of the reference feature. The component has an exterior surface with a reference feature thereon. The method includes determining an initial condition of the reference feature, subjecting the component to at least one duty cycle after determining the initial condition, determining a subsequent condition of the reference feature after the at least one duty cycle while the component is in a service position, and forming a replicate of the reference feature while the reference feature is in one of the initial condition or the subsequent condition. One of the initial condition or the subsequent condition may be determined based on the replicate of the reference feature.
Abstract:
The invention relates generally to the measurement and dimensional analysis of an object and, more particularly, to the correction of distortion in volumetric data of the object using dimensional data of the object. In one embodiment, the invention provides a method of analyzing an object, the method comprising: acquiring volumetric data of an object using an X-ray computed tomography (CT) imaging system; acquiring dimensional data of the object using a vision-based system; determining whether the volumetric data include a distortion; and in the case that the volumetric data are determined to include a distortion, correcting the distortion in the volumetric data using the dimensional data.
Abstract:
A method for correcting a magnification in image measurements is implemented using a computer device including one or more processors coupled to a user interface and one or more memory devices. The method includes acquiring a plurality of images of a target. Each image is acquired at a different distance from the target. The method also includes determining a distance between a lens used in acquiring the plurality of images and the target and determining a magnification of each acquired image. The method further includes determining a magnification correction with respect to a reference, determining a change in a size of the target, and outputting the determined change in a size of the target.
Abstract:
Various embodiments include approaches for monitoring turbomachine components. In various particular embodiments, a system for monitoring a component within a turbomachine includes: a borescope probe sized to pass through an opening in the turbomachine, the borescope probe for detecting a symbolic data array on the component within the turbomachine; and at least one computing device operably coupled to the borescope probe, the at least one computing device configured to: obtain image data about the symbolic data array from the borescope probe; evaluate the image data to determine whether the image data is compatible with a symbolic data array analysis program; and analyze the image data using the symbolic data array analysis program in response to determining the image data is compatible with the symbolic data array analysis program.