Abstract:
A laminated stator for a motor includes a first plurality of stator laminations with a first electrical conductivity and a first thermal conductivity, and a second plurality of stator laminations with a second electrical conductivity and a second thermal conductivity, wherein the second electrical conductivity is lower than the first electrical conductivity, the second thermal conductivity is higher than the first thermal conductivity, and the second plurality of stator laminations are disposed throughout the first plurality of stator laminations.
Abstract:
An aircraft engine assembly includes an engine housing, a low pressure spool disposed within the engine housing, and a high pressure spool disposed within the engine housing. Also included is a flux-switching machine disposed within the engine housing, the flux-switching machine comprising a rotor, a stator, a field winding and an armature winding, the flux-switching machine configured to generate power for the aircraft power system.
Abstract:
A system includes a permanent magnet generator (PMG) with a generator shaft. An input spline is included on the generator shaft on a first side of the PMG with respect to a longitudinal axis of the generator shaft. A brake is operatively connected to the generator shaft axially between the input spline and an end of the generator shaft on a second side of the PMG opposite the first side with respect to the longitudinal axis.
Abstract:
An aircraft includes a compression system for pressurizing a cabin of the aircraft. The air compression system includes a first motor, a second motor and an inverter. The first motor compresses air at a compressor to pressurize the cabin, thereby generating heat. The second motor circulates a cooling air to cool the compressor. The inverter provides power to both the first motor and the second motor.
Abstract:
An aircraft electric power generation and start system (EPGSS) includes a main machine, a starter permanent magnet generator (PMG), a generator PMG, and a carrier injection sensorless (CIS) system. The main machine selectively operates in a start mode or a generator mode. The starter PMG includes a first PMG stator and a first PMG rotor and is configured to rotate along with the shaft. The generator PMG includes a second PMG stator and a second PMG rotor configured to rotate along with the shaft. The CIS system determines one or both of a PMG voltage and a PMG current corresponding to the first PMG during the start mode, and determines a rotational position of the main rotor based on one or both of the PMG voltage and the PMG current.
Abstract:
A rotor for an electrical machine includes a rotor core having a plurality of circumferentially spaced apart rotor poles. Windings are seated in gaps between circumferentially adjacent pairs of the rotor poles. A wedge secures the windings in each gap. The wedge includes a first member made of a first material and at least one second member made of a second material. The second material has a higher electrical conductivity than the first material. The wedge is configured to supply Q-axis damping. A pair of end plates is connected electrically to the at least one second member at opposing longitudinal ends thereof thereby completing a Q-axis winding circuit for each wedge.
Abstract:
A generator arrangement includes a housing with a mounting feature, a main generator with an outboard shaft arranged within the housing and axially offset from the mounting feature along a rotation axis, and a permanent magnet generator. The permanent magnet generator has an inboard shaft arranged within the housing between the main generator and the mounting feature. The outboard shaft is coupled to the inboard shaft to provide rotation to the main generator through the permanent magnet generator. Accessory gearboxes and methods of generating electrical power are also described.
Abstract:
A generator arrangement includes a housing with a mounting feature, a main generator with an outboard shaft arranged within the housing and axially offset from the mounting feature along a rotation axis, and a permanent magnet generator. The permanent magnet generator has an inboard shaft arranged within the housing between the main generator and the mounting feature. The outboard shaft is coupled to the inboard shaft to provide rotation to the main generator through the permanent magnet generator. Accessory gearboxes and methods of generating electrical power are also described.
Abstract:
An electrical machine includes a stator defining a plurality of circumferentially spaced slots. A layered conductor is wound into the slots. The layered conductor includes a plurality of layers wherein at least two adjacent layers in the plurality of layers have electrical conductivities that are different from one another. The at least two adjacent layers can form an interface therebetween that is tangentially aligned with a circumferential direction around the stator. The at least two adjacent layers can be in electrical communication with one another with no intervening insulator therebetween. One of the at least two adjacent layers can include a relatively high electrical conductivity metal, and another one of the at least two adjacent layers can include a relatively low electrical conductivity metal.
Abstract:
An electric motor control system, including an electric motor having a first winding set including first and second parallel windings, the first and second windings operable to each current based on the combined phase current, and a differential current sensor operably coupled to the first winding and the second winding. The differential current sensor measuring a differential current flowing through the first winding and the second winding and operable to transmit a signal indicative of the differential current based on the measuring. The system also includes a motor controller connected to the electric motor, the motor controller operable to direct the combined phase current through the phase lead, receive the differential current signal, determine if the differential current flowing through the winding set exceeds a selected threshold, and identify a health status of the motor winding set as degraded if the differential current exceeds the selected threshold.