Abstract:
A resonator including a lower substrate having a groove, a dielectric filling the groove, a material film formed on the inner wall of the groove, the material film for preventing the permittivity from suddenly changing between the lower substrate and the dielectric, an upper substrate that is combined with the lower substrate to form a cavity, a conductive thin film formed on the lower surface of the upper substrate to face the dielectric and having a slot in contact with the material film and exposing the dielectric, and a strip line for a wave-guide that is formed on the upper part of the upper substrate and is connected to the conductive thin film. According to the resonator, the size of a cavity corresponding to a given resonance frequency can be reduced by filling a cavity with a dielectric (or magnetic material).
Abstract:
A microgyroscope with two resonant plates is provided. The microgyroscope includes a substrate; first and second frames provided on the substrate to have a predetermined height, the first and second frames facing each other; a plurality of anchors supporting the first and second frames with respect to the substrate; first and second resonant plates provided between the first and second frames to be separated from each other by a predetermined distance; and a matching link unit connected to the first and second resonant plates so that it links the motion of one resonant plate to the motion of the other resonant plate such that the matching link unit is moved by the motion of one resonant plate in a first direction and then moves the other resonant plate in a second direction opposite to the first direction. In the microgyroscope, the difference between the resonance frequencies of the two resonant plates is removed by a self resonant matching structure implemented by the matching link, so that the range of an allowable process error is large, and the microgyroscope can be easily manufactured. Additionally, the reliability and the linearity of a resonance structure are improved. Since the driving beam and the sensing beam are separately designed, mode coupling can be prevented, thereby increasing the sensing sensibility.
Abstract:
A two-dimensional (2D)/three-dimensional (3D) switchable image display device is provided. The 2D/3D switchable image display device forms gradation of an image in a light modulation panel, provides color to light beams that penetrate a plurality of electro-wetting prisms arranged in correspondence to the plurality of pixels of the image, and adjusts the direction of the light beam such that the light beams of the pixels of the image are directed towards at least two different view zones in a 3D mode and such that the light beams maintain their paths in a 2D mode.
Abstract:
A display apparatus according to example embodiments may include a light source; an all-in-one type light guide plate; a reflective plate; and a display panel. The all-in-one type light guide plate may include a light guide member and light emitting members, wherein the light guide member reflects light incident from the light source toward the light emitting members, and the light emitting members protrude from one side of the light guide member and emit light incident from the light guide member. The light guide member and the light emitting members may be integrally formed or individually combined to form an all-in-one type light guide plate. The display apparatus may form an image using light from a backlight unit and external light.
Abstract:
A changeable liquid lens array and a method of manufacturing the same. The changeable liquid lens array includes a substrate, a plurality of partition walls arrayed on the substrate and having a fluid travel path, cells defined by the plurality of partition walls, a first fluid comprised in the cells, a second fluid arranged on the first fluid, a first electrode arranged on at least one side surface of each of the partition walls, and a second electrode disposed to be separate from the partition walls. A shape of an interface between the first fluid and the second fluid changes based on a voltage that is applied to the first electrode and the second electrode.
Abstract:
Example embodiments relate to a backlight unit and a display apparatus employing the same. The backlight unit may include a light source; a polarization conversion unit configured to convert polarization of light incident from the light source; and a light guide plate configured to emit light incident through the polarization conversion unit. The light guide plate may include a plurality of light emitting portions configured to emit light through specular reflection. The light polarized by the polarization conversion unit may maintain its polarization state when it is subsequently emitted from the light guide plate.
Abstract:
A three-dimensional (3D) image display apparatus and method are provided. The 3D image display apparatus includes an image generating unit configured to generate an image, an active optical device configured to change a propagation path of light containing the generated image, and provide the generated image to multiple viewpoints that are located along a first direction parallel to the image generating unit, and a varifocal lens configured to vary a focal position of the generated image along a second direction away from the image generating unit.
Abstract:
A 3D image display apparatus is provided. The 3D image display apparatus includes a light emission unit including one or more cells, the cells being configured to respectively adjust a direction in which light is emitted, an active prism array on the light emission unit, the active prism array including one or more prism units corresponding to the cells, the active prism array being configured to adjust an inclination of a refracting surface of each of the prism units according to an electric signal to change an optical path, and a display panel configured to modulate light that passes through the active prism array according to an image signal to form an image.
Abstract:
A method and apparatus for displaying three dimensional (3D) images are provided. The display apparatus includes a backlight unit which emits light, an image panel which includes plurality of pixels for modulating the light from the backlight unit to form a gray scaled image, an electrowetting lens unit which includes first electrowetting lenses arranged to correspond to the plurality of pixels in the image panel and second electrowetting lenses arranged opposite to the first electrowetting lenses, wherein at least two of the first electrowetting lenses and at least one of the second electrowetting lenses may be arranged opposite each other; and a controller which controls the electrowetting lens unit to separate beams exiting from the image panel into at least two viewing zones in a 3D image display mode.
Abstract:
A 2D/3D switchable backlight unit and an image display device employing the same are provided. The 2D/3D switchable backlight unit includes a light source, a light guide plate in which light emitted from the light source is total-internal-reflected, and a switch array comprising a plurality of switches that selectively contact a first surface of the light guide plate and emit light by frustrated total internal reflection inside the light guide plate. In 2D mode, each of the switches contacts the first surface of the light guide plate. In 3D mode, some of the switches contact the first surface of the light guide plate.