Abstract:
A method for transferring data in a communication system is implemented in a network device. In the method, the network device receives an IR version of a frame, a sequence number, and a revision number in a media access control (MAC) layer. The network device determines whether the received frame can be decoded and acknowledged based on the received sequence number and revision number. The network device sets state variables VS,R equal to 1−VS,R and VRV,R equal to −1 if the frame is decoded.
Abstract:
An embodiment method of indicating reception of a plurality of low-payload messages includes receiving the plurality of low-payload messages from respective user equipments (UEs). The method also includes generating a composite reception indication (RIND) containing a RIND for each of the plurality of low-payload messages. The method also includes broadcasting the composite RIND to the respective UEs.
Abstract:
A method for agile wireless access network includes determining, by a network controller, capabilities and neighborhood relations of radio nodes in the radio access network. The network controller then configures a backhaul network infrastructure for the radio access network in accordance with the capabilities and the neighborhood relations of the radio nodes.
Abstract:
Embodiments are provided for transmitting channel information, such as control channel information, using lower resources at the transmitter combined with using apriori information associated with channel information in the decoder of the receiver. The apriori information represent predictable information that can be predicted by the receiver and is not transmitted with the channel information by the transmitter. The transmitter determines the apriori information for the channel and codes the channel information into bits and fields excluding the apriori information. Upon receiving the channel information, the receiver determines the apriori information associated in accordance with previously received information. The apriori information is then provided as probability information for input to the decoder. The decoder then decodes the received information in accordance with the apriori information.
Abstract:
Increased resource utilization efficiency can be improved by modeling path costs during admission and path-selection. Specifically, path costs for candidate paths are modeled based on load characteristics (e.g., current load, load variation, etc.) of links in the candidate paths. Path costs can represent any quantifiable cost or liability associated with transporting a service flow over the corresponding path. For example, path costs can correspond to a probability that at least one link in the path will experience an outage when transporting the service flow, a price charged by a network operator (NTO) for transporting the traffic flow over the candidate path, or a total network cost for transporting the flow over a candidate path. The candidate path having the lowest path cost is selected to transport a service flow.
Abstract:
A communication system and a method for transferring data are provided. The method is implemented in a communication system having first and second network devices. The first network device configured to transmit a coded version of a frame and a first state variable to the second network device in a media access control (MAC) layer. The second network device is configured to receive the coded version of the frame and the first state variable and transmit a second state variable to the first network device. The first network device and the second network device use a state machine based on the first and second state variables and implement a hybrid automatic repeat request (HARQ) protocol.
Abstract:
An embodiment method of indicating reception of a plurality of low-payload messages includes receiving the plurality of low-payload messages from respective user equipments (UEs). The method also includes generating a composite reception indication (RIND) containing a RIND for each of the plurality of low-payload messages. The method also includes broadcasting the composite RIND to the respective UEs.
Abstract:
System and method embodiments are provided for configuring a network to forward traffic from a first network zone to a second network zone. In an embodiment, a first zone controller of the first zone receives information indicating network capability. The information includes a plurality of parameters of a constraint function. The first network controller provisions a network node, e.g., at the second zone, to forward traffic from the first zone to the second zone in accordance with the received information. The information indicating network capability includes one or more variables relating to the constraint. The constraint relates to at least one current traffic level or at least one wireless link in the second zone.