Abstract:
Predicting mobile station migration between geographical locations of a wireless network can be achieved using a migration probability database. The database can be generated based on statistical information relating to the wireless network, such as historical migration patterns and associated mobility information (e.g., velocities, bin location, etc.). The migration probability database consolidates the statistical information into mobility prediction functions for estimating migration probabilities/trajectories based on dynamically reported mobility parameters. By example, mobility prediction functions can compute a likelihood that a mobile station will migrate between geographic regions based on a velocity of the mobile station. Accurate mobility prediction may improve resource provisioning efficiency during admission control and path selection, and can also be used to dynamically adjust handover margins.
Abstract:
A method includes receiving, by a first device from a second device, a plurality of encoded messages on a plurality of transmission time intervals (TTIs), where the plurality of encoded messages are forward error correction (FEC) encoded, and where the FEC spans the plurality of encoded messages and decoding the plurality of encoded messages using FEC. The method also includes determining a plurality of decoding status messages in accordance with decoding the plurality of encoded messages and transmitting, by the first device to the second device, the plurality of decoding status messages less often than once every TTI.
Abstract:
Dynamic point selection (DPS) can be implemented using access points having partial or no DPS synchronization. Specifically, a mobile device may broadcast a bounce back message to access points participating in DPS transmissions to signal that a data segment has been successfully received and/or decoded by the mobile device. The bounce back message may cause the access points to drop remaining packets corresponding to the data segment from their buffers without sending those remaining packets over their respective radio interfaces. The bounce back message may be broadcast over any wireless signaling channel, such as via radio link control (RLC) signaling. Moreover, different priorities may be assigned to encoded packets intended for DPS transmission based on whether the encoded packets are communicated over a primary or secondary backhaul path.
Abstract:
A method includes receiving, by a first device from a second device, a plurality of encoded messages on a plurality of transmission time intervals (TTIs), where the plurality of encoded messages are forward error correction (FEC) encoded, and where the FEC spans the plurality of encoded messages and decoding the plurality of encoded messages using FEC. The method also includes determining a plurality of decoding status messages in accordance with decoding the plurality of encoded messages and transmitting, by the first device to the second device, the plurality of decoding status messages less often than once every TTI.
Abstract:
An embodiment method of indicating reception of a plurality of low-payload messages includes receiving the plurality of low-payload messages from respective user equipments (UEs). The method also includes generating a composite reception indication (RIND) containing a RIND for each of the plurality of low-payload messages. The method also includes broadcasting the composite RIND to the respective UEs.
Abstract:
A method for agile wireless access network includes determining, by a network controller, capabilities and neighborhood relations of radio nodes in the radio access network. The network controller then configures a backhaul network infrastructure for the radio access network in accordance with the capabilities and the neighborhood relations of the radio nodes.
Abstract:
Visual information from camera sensors can be used to assign scheduling and/or transmission parameters in a wireless network. For example, the visual information can be used to visually discover a user equipment (UE) prior to initiating link discovery. This may be accomplished by analyzing the visual information to identify an absolute or relative position of the UE. The positioned may then be used to select antenna configuration parameters for transmitting a discovery signal, e.g., direction of departure (DoD), angle of departure (AoD), precoder. As another example, the visual information is used to predict a link obstruction over a radio interface between a UE and an AP. In yet other examples, the visual information may be used for traffic engineering purposes, such as to predict a traffic density or pair UEs with APs.
Abstract:
There are disclosed systems, devices, and methods for distributing pre-fetch data. A parent node obtains pre-fetch data comprising at least one of: i) data expected to be of interest to a particular user, pre-fetched by the parent node from at least one data source; and (ii) at least one identifier identifying data expected to be of interest to the particular user, for pre-fetching the identified data at a child node. The parent node selects first and second subsets of the pre-fetch data for transmission, respectively, to first and second child nodes, the selecting based on at least a predicted future location of the particular user and a respective geographic location of the first and second child nodes; and transmits the first and second subsets of the pre-fetch data, respectively, to the first and second child nodes.
Abstract:
An embodiment method of indicating reception of a plurality of low-payload messages includes receiving the plurality of low-payload messages from respective user equipments (UEs). The method also includes generating a composite reception indication (RIND) containing a RIND for each of the plurality of low-payload messages. The method also includes broadcasting the composite RIND to the respective UEs.