Cross talk and interference reduction for high frequency wireless interconnects

    公开(公告)号:US10992021B2

    公开(公告)日:2021-04-27

    申请号:US15745681

    申请日:2015-09-24

    Abstract: Embodiments of the invention may include packaged device that may be used for reducing cross-talk between neighboring antennas. In an embodiment the packaged device may comprise a first package substrate that is mounted to a printed circuit board (PCB). A plurality of first antennas may also be formed on the first package. Embodiments may also include a second package substrate that is mounted to the PCB, and the second package substrate may include a second plurality of antennas. According to an embodiment, the cross-talk between the first and second plurality of antennas is reduced by forming a guiding structure between the first and second packages. In an embodiment the guiding structure comprises a plurality of fins that define a plurality of pathways between the first antennas and the second antennas.

    Piezoelectric contact microphone with mechanical interface

    公开(公告)号:US10462578B2

    公开(公告)日:2019-10-29

    申请号:US15589203

    申请日:2017-05-08

    Abstract: A piezoelectric contact microphone with a mechanical vibration conduction interface provides an improved mobile electronic device microphone. In an embodiment, the mechanical vibration conduction interface is placed on a bone structure and conducts vibration from the bone structure to the piezoelectric contact microphone. Because of the direct contact, this use of piezoelectric contact microphone reduces or eliminates interferences effects due to wind and other airflow over the microphone. The mechanical vibration conduction interface materials and structure are selected to provide effective transmission of vibration from the bone structure to the piezoelectric element within the piezoelectric contact microphone. This piezoelectric contact microphone enables mobile electronic devices to provide improved voice communication, voice transcription, and voice command recognition in the presence of wind noise and other noise.

    Millimeter wave fabric network over dielectric waveguides

    公开(公告)号:US10461388B2

    公开(公告)日:2019-10-29

    申请号:US15394990

    申请日:2016-12-30

    Abstract: Radio frequency (RF) data transfer between components in rack mounted systems is facilitated through the use of dielectric waveguides and millimeter Wave (mm-Wave) transceivers. A signal generator provides one or more data signals to a serializer/deserializer (SERDES) which serializes a plurality of parallel data signals to produce a single, serialized, signal containing data from each of the input signals to the SERDES. A mm-Wave die upconverts the serialized signal to a mm-Wave signal and a mm-Wave launcher launches the signal into the dielectric waveguide. At the receiving end the process is reversed such that the mm-Wave signal is first downconverted and passed through a SERDES to provide the original one or more signals to a recipient signal generator. Some or all of the components may be formed directly in the semiconductor package.

Patent Agency Ranking