Abstract:
In one example an electronic device comprises at least heat generating component, a heat spreader positioned proximate the at least one heat generating component and a passive radiator cooling device, comprising an enclosure, an active speaker positioned at least partially within the enclosure, and a passive audio radiator positioned at least partially within the enclosure. Other examples may be described.
Abstract:
Embodiments are generally directed to a camera to capture multiple sub-images for the generation of an image. An embodiment of a camera assembly includes one or more lenses to transmit light from a scene, and an image sensor to simultaneously capture a plurality of sub-images of the scene via the one or more lenses, the plurality of sub-images including a first sub-image and a second sub-image. A processing element is to process the sub-images sensed by the image sensor, the processing of the sub-images includes combining at least the first sub-image and the second sub-image to generate a combined image of the scene.
Abstract:
A chassis for an electronic device may include a first metal layer to form an inner surface of the chassis, an insulating layer on the first metal layer, and a second metal layer on the insulating layer. The second metal layer may be connected to a ground area of a circuit board to be provided in the chassis.
Abstract:
Methods, apparatus, systems are disclosed for altering displayed content on a display device responsive to a user's proximity. In accord with an example, a computing system includes a display, a sensor to output a signal, machine readable instructions, and programmable circuitry to be programmed in accordance with the instructions to determine a distance between the compute system and a person based on the signal, and cause a size of at least one object to be presented on the display to be adjusted based on the distance.
Abstract:
Methods, apparatus, systems are disclosed for altering displayed content on a display device responsive to a user's proximity. In accord with an example, a computing system includes a display, a sensor to output a signal, machine readable instructions, and programmable circuitry to be programmed in accordance with the instructions to intermittingly determine a distance between the compute system and a person based on the signal, and cause a size of at least one object to be presented on the display to be adjusted based on the distance.
Abstract:
Technologies for a flexible three-dimensional power plane in a chassis are disclosed. In one embodiment, a flexible ribbon cable is laid along a circuit board tray. The flexible ribbon cable is secured to the tray using power bosses. The power bosses connect to one or more conductors on the ribbon cable. When the circuit board is mounted on the circuit board tray, the power bosses extend through holes in the circuit board and mate with power clips on the surface of the circuit board tray. The ribbon cable, power bosses, and power clips can distribute power to various locations on the circuit board, without requiring large traces that take up space on the circuit board.
Abstract:
Methods, apparatus, systems are disclosed for altering displayed content on a display device responsive to a user's proximity. In accord with an example, a computing system includes a memory, a sensor to collect data representative of a viewing distance between a display and a user of the display, and a scaler to adjust a size of at least one object displayed by the display based on the viewing distance from the display.
Abstract:
Various embodiments are generally directed to an apparatus, method and other techniques to receive thermal energy from a source, convert phase change material (102) from an initial state to a secondary state in response to absorption of the thermal energy, and transfer the thermal energy from the phase change material (102) to a thermoelectric component (106). In addition, various embodiments may include collecting, conducting and converting the thermal energy into electrical energy for use in powering one or more electronic components.
Abstract:
An apparatus for interfacing is described herein. The apparatus includes logic, at least partially including hardware logic, to detect that a blow input received by the apparatus is from a human breath. A characteristic of the blow input is identified. An active application is determined to be running on the apparatus. The blow input is translated to an instruction based on the characteristic and the active application. The instruction is transmitted to the active application.