Abstract:
This disclosure describes methods, apparatus, and systems related to high efficiency signal field enhancement. A device may determine a wireless communication channel with a first device in accordance with a wireless communication standard. The device may generate a high efficiency preamble in accordance with a high efficiency communication standard, the high efficiency preamble including, at least in part, one or more legacy signal fields, one or more high efficiency signal fields, and one or more training fields. The device may determine one or more indication bits included in at least one of the one or more legacy fields. The device may determine a repetition pattern of at least one of the one or more high efficiency signal fields based at least in part, on the one or more indication bits. The device may cause to send the high efficiency preamble to the first device over the wireless communication channel.
Abstract:
This disclosure describes methods, apparatus, and systems related to a low PAPR LTF sequences system. A device may determine a wireless communication channel with a first device in accordance with a wireless communication standard, the wireless communication channel having one or more streams. The device may determine one or more common sequences between the one or more streams. The device may generate a high efficiency preamble in accordance with a high efficiency communication standard. The device may generate one or more long training field (LTF) sequences included in the preamble based at least in part on the one or more common sequences and one or more codes. The device may cause to send the high efficiency preamble over the wireless communication channel.
Abstract:
This disclosure describes methods, apparatus, and systems related to a high efficiency signal field coding system. A device may determine a high efficiency preamble in accordance with a high efficiency communication standard to be sent to one or more devices, the high efficiency preamble including at least in part a high efficiency signal field. The device may determine a common part included in the high efficiency signal field. The device may determine one or more device specific parts associated with the one or more devices. The device may encode the high efficiency signal field based at least in part on a predetermination combination of at least one of the common part or the one or more device specific parts. The device may cause to send the high efficiency preamble to the one or more devices, including the encoded high efficiency signal field.
Abstract:
This disclosure describes methods, apparatus, and systems related to early indication system. A device may identify a high efficiency frame in accordance with a high efficiency communication standard, received from a first device, the high efficiency frame including, at least in part, one or more legacy signal fields and one or more high efficiency signal fields. The device may determine a length field included in one of the one or more legacy signal fields, wherein the length field includes an indication bit. The device may determine a position of a high efficiency short training field within the high efficiency frame based at least in part on the indication bit.
Abstract:
Methods, apparatuses, and computer readable media for MU-RTS and CTS in WLANs are disclosed. An apparatus is disclosed that comprises circuitry that is configured to generate a packet to indicate a multi-user request-to-send (MU-RTS), wherein the packet indicates one or more HEW station information fields, wherein the one or more HEW station information fields comprise an address of a HEW station and an indication of a bandwidth for the HEW station to transmit one or more clear-to-send (CTS) packets; and transmit the packet to the one or more HEW stations. A HEW device is disclosed that includes circuitry configured to receive a multi-user request-to-send (MU-RTS); copy a scramble seed from the MU-RTS to a clear-to-send (CTS) packet; and transmit the CTS packet.
Abstract:
Embodiments of a system and method for beamforming in a Wireless Network are generally described herein. In some embodiments, an enhanced Node B (eNB) transmits to User Equipment (UE), from a plurality (Nc) of antenna ports of a plurality (Nt) of transmit antennas, a data signal where signal power is allocated in eigen beams, each of the Nt transmit antennas having antenna ports that are adjustable in elevation and in azimuth. The eNB also determines and transmits to the UE a Pc set of the largest principal eigen beams of the data signal and receives, as feedback from the UE, a precoding matrix that identifies the antenna port from which strongest energy in the data signal is detected at the UE. The eNB uses the precoding matrix for beamforming.
Abstract:
A user equipment (UE) can reserve shared spectrum between two wireless protocols upon the request from a tower. For example, an enhanced node B (eNB or eNodeB) transmits a message to associated UEs including a set of candidate UEs, a length of time to reserve, and a frequency band to use. UEs perform medium sensing on the specified spectrum if a UE finds its identifier in the set of candidate UEs. Candidate UEs transmit a clear to send (CTS) message with channel reservation information if the medium is idle. A result of the success or failure of the CTS transmission attempt is sent back to the eNB. Upon receiving the feedback information from the UEs, the eNB starts sending data to those UEs that sent the positive feedback on the channel reservation.
Abstract:
For example, an apparatus may include a segment parser to parse scrambled data bits of a PPDU into a first plurality of data bits and a second plurality of data bits, the PPDU to be transmitted in an OFDM transmission over an aggregated bandwidth comprising a first channel in a first frequency band and a second channel in a second frequency band; a first baseband processing block to encode and modulate the first plurality of data bits according to a first OFDM MCS for transmission over the first channel in the first frequency band; and a second baseband block to encode and modulate the second plurality of data bits according to a second OFDM MCS for transmission over the second channel in the second frequency band.
Abstract:
Embodiments of an access point (AP) may comprise memory and processing circuitry coupled to the memory, and transceiver circuitry coupled to the processing circuitry. The processing circuitry of the AP may be configured to encode a trigger frame to allocate a center 26 tone RU of an 80 MHz channel for an HE-trigger-based PPDU, the center 26 tone RU having an adjacent upper 20 MHz subchannel and an adjacent lower 20 MHz subchannel. In an embodiment, the center 26 tone RU is for a station (STA) and wherein the trigger frame indicates to the STA to transmit a pre-HE-STF preamble on one of the adjacent upper 20 MHz subchannel, the adjacent lower 20 MHz subchannel, or both the adjacent upper and lower 20 MHz subchannels, and configure the wireless device to transmit the trigger frame to the station.
Abstract:
Techniques for improving CSI (Channel State Information) in connection with FD (Full Dimension)-MIMO (Multiple Input Multiple Output) are discussed. A first set of techniques can employ hierarchical cell common class B CSI-RS for improved beam selection. A second set of techniques can provide improved CSI feedback based on eigenvalue(s) and co-phase associated with a precoder. Various embodiments can employ either or both of the first set of techniques and/or the second set of techniques.