Abstract:
Embodiments of a cannula seal are disclosed. In some embodiments, a cannula seal can include a base portion that engages with a cannula; and a seal portion integrally formed with the base portion that slidebly engages with an instrument shaft such that an insertion frictional force between the seal portion and the instrument shaft for insertion of the instrument shaft is symmetrical and substantially equal with a retraction frictional force.
Abstract:
A remote center manipulator for use in minimally invasive robotic surgery includes a base link held stationary relative to a patient, an instrument holder, and a linkage coupling the instrument holder to the base link. First and second links of the linkage are coupled to limit motion of the second link to rotation about a first axis intersecting a remote center of manipulation. A parallelogram linkage portion of the linkage pitches the instrument holder around a second axis that intersects the remote center of manipulation. The second axis is angularly offset from the first axis by a non-zero angle other than 90 degrees.
Abstract:
Telerobotic, telesurgical, and/or surgical robotic devices, systems, and methods employ surgical robotic linkages that may have more degrees of freedom than an associated surgical end effector n space. A processor can calculate a tool motion that includes pivoting of the tool about an aperture site. Linkages movable along a range of configurations for a given end effector position may be driven toward configurations which inhibit collisions. Refined robotic linkages and method for their use are also provided.
Abstract:
Minimally invasive surgical methods employ an offset drive shaft to actuate an end effector. A minimally invasive surgical method includes introducing an end effector to an internal surgical site. The end effector includes an end effector base that is coupled to the instrument shaft via a wrist. An end effector articulation mechanism is operated to reorient the end effector base relative to the instrument shaft. A surgical task is performed by operating a motor to rotate an offset drive shaft relative to the instrument shaft to actuate the end effector.
Abstract:
A medical robotic assembly configured to support, insert, retract, and actuate a surgical instrument. The medical robotic assembly includes a surgical instrument carriage configured for detachably mounting a surgical instrument to the surgical instrument carriage. The surgical instrument carriage includes a motor housing, a first output assembly in the motor housing, a second output assembly in the motor housing, a first sensor assembly configured to sense a rotational orientation of a first output drive coupling, and a second sensor assembly configured to sense a rotational orientation of a second output drive coupling.
Abstract:
Minimally invasive surgical methods employ an offset drive shaft to actuate an end effector. A minimally invasive surgical method includes introducing an end effector to an internal surgical site. The end effector includes an end effector base that is coupled to the instrument shaft via a wrist. An end effector articulation mechanism is operated to reorient the end effector base relative to the instrument shaft. A surgical task is performed by operating a motor to rotate an offset drive shaft relative to the instrument shaft to actuate the end effector.
Abstract:
An instrument carriage provides control of a surgical instrument coupled to the instrument carriage. The instrument carriage includes a control surface that is coupled to the surgical instrument to provide the control. A detection pin having a first distal end that extends from the control surface is coupled to the instrument carriage. A sensor fixed relative to the instrument carriage detects a position of the detection pin. A carriage controller coupled to the sensor, provides a signal that indicates at least a first state and a second state responsive to a distance between the distal end of the detection pin and the control surface. The signal may indicate if an instrument sterile adapter is coupled to the control surface of the instrument carriage. A third state of the signal may indicate if a surgical instrument is coupled to the instrument sterile adapter.
Abstract:
A robotic assembly is configured to support, insert, retract, and actuate a surgical instrument mounted to the robotic assembly. The robotic assembly includes an instrument holder base member, a motor housing moveably mounted to the instrument holder base member, a carriage drive mechanism operable to translate the motor housing along the instrument holder base member, a plurality of drive motors, a plurality of gear boxes, and a plurality of output drive couplings driven by the gear boxes. The robotic assembly includes a sensor assembly that includes an orientation sensor, a sensor target, and a sensor shaft drivingly coupling the sensor target to a corresponding one of the output drive couplings.
Abstract:
Devices, systems, and methods for reconfiguring a surgical manipulator by moving the manipulator within a null-space of a kinematic Jacobian of the manipulator arm. In one aspect, in response to receiving a reconfiguration command, the system drives a first set of joints and calculates velocities of the plurality of joints to be within a null-space. The joints are driven according to the reconfiguration command and the calculated movement so as to maintain a desired state of the end effector or a remote center about which an instrument shaft pivots. In another aspect, the joints are also driven according to a calculated end effector or remote center displacing velocities within a null-perpendicular-space of the Jacobian so as to effect the desired reconfiguration concurrently with a desired movement of the end effector or remote center.
Abstract:
Devices, systems, and methods for avoiding collisions between a manipulator arm and an outer patient surface by moving the manipulator within a null-space. In response to a determination that distance between an avoidance geometry and obstacle surface, corresponding to a manipulator-to-patient distance is less than desired, the system calculates movement of one or more joints or links of the manipulator within a null-space of the Jacobian to increase this distance. The joints are driven according to the reconfiguration command and calculated movement so as to maintain a desired state of the end effector. In one aspect, the joints are also driven according to a calculated end effector displacing movement within a null-perpendicular-space of the Jacobian to effect a desired movement of the end effector or remote center while concurrently avoiding arm-to-patient collisions by moving the joints within the null-space.