Abstract:
A system and method for reliably detecting when a device has been dropped. In a non-limiting example, a drop detection system may be operable to perform one or more of: fall detection, end-of-fall detection, and/or detection of no motion after the fall. The drop detection system may, for example, analyze information from one or more MEMS sensors on-board the device to detect when the device has been dropped.
Abstract:
A device may include a sensor, a sampling unit, and an interpolator. The sensor may be configured to sense motion and output a sensed signal. The sampling unit may be configured to sample the sensed signal with a sensor clocking signal to generate a plurality of sampled values. The interpolator may be coupled to the sampling unit and may be configured to receive the plurality of sampled values, the sensor clocking signal, and a reference clocking signal external to the device. The interpolator may be configured to interpolate the plurality of sampled values based on the reference clocking signal and further based on the sensor clocking signal to generate a plurality of output values.
Abstract:
A pressure sensor of a mobile device may be corrected by receiving reference pressure information from an associated device. The correction using differential pressure measurements may be influenced by one or more determined condition characteristics.
Abstract:
A sensor processing unit comprises a sensor processor. The sensor processor is configured to communicatively couple with a microphone. The sensor processor is configured to acquire, from the microphone, a sample captured by the microphone from an environment in which the microphone is disposed. The sensor processor is configured to perform music activity detection on the audio sample to detect for music within the audio sample. Responsive to detection of music within the audio sample, the sensor processor is configured to send a music detection signal to an external processor located external to the sensor processing unit, the music detection signal indicating that music has been detected in the environment.
Abstract:
In a method of electronic image stabilization, a processor buffers image data into a memory buffer, the image data being obtained by the processor from an image sensor disposed in an electronic device. The processor obtains motion data from a motion sensor disposed in the electronic device, wherein the motion data corresponds with a time of capture of the image data. The processor analyzes the motion data to determine a stabilization correction to apply to the image data. The processor applies the determined stabilization correction to the image data to achieve stabilized image data. The determined stabilization correction is applied, and the stabilized image data is achieved, by the processor without requiring a transfer of the image data from the memory buffer to a graphics processing unit. The stabilized image data is output.
Abstract:
Various aspects of this disclosure comprise systems and methods for synchronizing sensor data acquisition and/or output. For example, various aspects of this disclosure provide for achieving a desired level of timing accuracy in a MEMS sensor system, even in an implementation in which timer drift is substantial.
Abstract:
A device may include a sensor, a sampling unit, and an interpolator. The sensor may be configured to sense motion and output a sensed signal. The sampling unit may be configured to sample the sensed signal with a sensor clocking signal to generate a plurality of sampled values. The interpolator may be coupled to the sampling unit and may be configured to receive the plurality of sampled values, the sensor clocking signal, and a reference clocking signal external to the device. The interpolator may be configured to interpolate the plurality of sampled values based on the reference clocking signal and further based on the sensor clocking signal to generate a plurality of output values.
Abstract:
A method and system for providing a self-test configuration in a device is disclosed. The method and system comprise providing a self-test mechanism in a kernel space of a memory and enabling a hook in a user space of the memory, wherein the hook is in communication with the self-test mechanism. The method and system also include running the self-test driver and utilizing the results.
Abstract:
A method and system for providing a self-test configuration in a device is disclosed. The method and system comprise providing a self-test mechanism in a kernel space of a memory and enabling a hook in a user space of the memory, wherein the hook is in communication with the self-test mechanism. The method and system also include running the self-test driver and utilizing the results.
Abstract:
A method includes generating motion data by receiving a gyroscope data from a gyroscope sensor, performing integration using the gyroscope data and generating an integrated gyroscope data using a first processor. The method further includes receiving a data from one or more sensors, other than the gyroscope sensor, and performing sensor fusion using the integrated gyroscope data and the data to generate motion data using a second processor.