Abstract:
Mechanisms for initiating a unicast video stream in response to a triggering event from a client node receiving a multicast video stream are disclosed. A distribution node communicatively coupled to a plurality of client nodes multicasts a first video stream of a program encoded in a first format to the plurality of client nodes. The distribution node detects a triggering event associated with a first client node of the plurality of client nodes that is receiving the first video stream. In response to the triggering event, a second video stream of the program encoded in a second format is unicasted.
Abstract:
The present invention is directed to a compound of Formula I or a single isomer thereof; where the compound is optionally as a pharmaceutically acceptable salt, hydrate, solvate or combination thereof, in addition to methods of preparing a Compound of Formula I, and methods of using a Compound of Formula I to treat cancer.
Abstract:
The present invention provides compounds for modulating protein kinase enzymatic activity for modulating cellular activities such as proliferation, differentiation, programmed cell death, migration and chemoinvasion. Compounds of the invention inhibit, regulate and/or modulate kinases, particularly Tie-2. Methods of using the compounds and pharmaceutical compositions thereof to treat kinase-dependent diseases and conditions are also an aspect of the invention.
Abstract:
The present invention provides compounds for modulating protein kinase enzymatic activity for modulating cellular activities such as proliferation, differentiation, programmed cell death, migration and chemoinvasion. More specifically, the invention provides quinazolines and quinolines which inhibit, regulate, and/or modulate kinase receptor, particularly c-Met, KDF, c-Kit, flt-3 and flt-4, signal transduction pathways related to the changes in cellular activities as mentioned above, compositions which contain these compounds, and methods of using them to treat kinase-dependent diseases and conditions. The present invention also provides methods for making compounds as mentioned above, and compositions which contain these compounds.
Abstract:
The present invention provides compounds for modulating protein kinase enzymatic activity for modulating cellular activities such as proliferation, differentiation, programmed cell death, migration and chemoinvasion. More specifically, the invention provides quinazolines and quinolines which inhibit, regulate, and/or modulate kinase receptor, particularly c-Met, KDF, c-Kit, flt-3 and flt-4, signal transduction pathways related to the changes in cellular activities as mentioned above, compositions which contain these compounds, and methods of using them to treat kinase-dependent diseases and conditions. The present invention also provides methods for making compounds as mentioned above, and compositions which contain these compounds.
Abstract:
This invention relates to the field of protein tyrosine kinases and inhibitors thereof. In particular, the invention relates to inhibitors of JAK-2, pharmaceutical compositions of the compounds for inhibiting JAK-2, methods of inhibiting JAK-2 in a cell, comprising contacting a cell in which inhibition of JAK-2 is desired with a compound or pharmaceutical composition comprising a compound according to the invention. The also comprises methods of treating a disease or condition that involves JAK-2 comprising administering to a patient a pharmaceutical composition comprising a compound according to the invention.
Abstract:
This invention relates to compounds for modulating protein kinase enzymatic activity for modulating cellular activities such as proliferation, differentiation, programmed cell death, migration and chemoinvasion, and to pharmaceutical compositions containing such compounds. Even more specifically, the invention relates to compounds that inhibit, regulate and/or modulate kinases, particularly Checkpoint Kinases, even more particularly Checkpoint Kinase 1, or Chk1. Methods of therapeutically or prophylactically using the compounds and compositions to treat kinase-dependent diseases and conditions are also an aspect of the invention, and include methods of treating cancer, as well as other disease states associated with unwanted angiogenesis and/or cellular proliferation, by administering effective amounts of such compounds.
Abstract:
Disclosed is a power LED light source that can be employed with different reflectors and other additional parts to form various power LED light units. Compared with the power LED light unit utilizing Luxeon LED packages and the like, the disclosed invention has the advantages of higher power, lower costs, better heat dissipation design and simpler optical design. The power LED light unit comprises of a base metal ring with multiple power LED dies mounted on it, one or more reflectors connected to the base metal ring, one or more extend metal rings connected to the base metal ring, a light unit base connected to the last extended metal ring, and a control circuit inside the metal rings. Such designed power LED light unit can emit light patterns such as parallel light pattern, non-parallel light pattern, and ring light pattern.
Abstract:
Seven thermally and optically efficient LED units and two control units are disclosed. Flashlights utilizing these LED units and control units are also disclosed. Such a flashlight mainly includes a cylindrical housing, a cylindrical rear cap, one of the seven LED units, one of the two control units. Each LED units are interchangeable between different emitting colors. Each LED unit mainly comprises a metal base, a reflector if the metal base is not a reflector itself, a leadframe formed attaching one or more metal pins to a printed circuit board, one or more LED dies mounted on the metal base, optical material disposed over the LED dies, and an optional lens to further focus the light.
Abstract:
The present invention provides compounds for modulating protein kinase enzymatic activity for modulating cellular activities such as proliferation, differentiation, programmed cell death, migration and chemoinvasion. More specifically, the invention provides quinazolines and quinolines which inhibit, regulate and/or modulate kinase receptor, particularly c-Met, KDR, c-Kit, flt-3 and flt-4, signal transduction pathways related to the changes in cellular activities as mentioned above, compositions which contain these compounds, and methods of using them to treat kinase-dependent diseases and conditions. The present invention also provides methods for making compounds as mentioned above, and compositions which contain these compounds.